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ABSTRACT

Automatic segmentation of skin lesion is still challenging

due to ambiguous boundary and noise interference of lesion

regions. Recent exiting Transformer-based methods often

directly apply Transformer to obtain long-range dependency

to overcome these problems. However, they generally do

not consider that patch partitioning strategy of Transformer

could lead to the loss of local details around boundaries.

Furthermore, dependencies across local windows only rep-

resent global information at a coarse level. Therefore, to

overcome the limitations, two novel modules, Local Focus

Module (LFM) and Global Augmentation Module (GAM)

are proposed in this paper. LFM learns the local context

around boundary regions to strengthen the discrimination be-

tween classes. And GAM learns the global context at a finer

level to enhance global feature representation. Integrating

LFM and GAM, a new Transformer encoder based frame-

work, Local-Global Augmentation Network (LGANet), is

proposed. LGANet is efficient in segmenting lesions with

ambiguous boundary and with noise interference and its per-

formances are demonstrated with extensive experiments on

two public skin lesion segmentation datasets.

Index Terms— Skin lesion segmentation, Transformer,

Local detail information, Global dependency

1. INTRODUCTION

Melanoma is the most malignant cancer among skin can-

cer [1], which seriously threatens human health and life.

Dermatologists usually identify lesions visually from der-

moscopy images. But manual identification is a boring and

heavy workload. Automated skin lesion segmentation can

greatly improve the diagnostic efficiency and assist dermatol-

ogists for further analysis.

Skin lesions often have noise interferences and ambigu-

ous boundaries (Fig. 1). It means global context and local

information surrounding boundaries are both needed. There-

fore, some Transformers-based methods applied Transformer

directly to extract global context as supplementary to CNN
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(a) Image (b) GT (c) Ours (d) FAT-Net   (e) TransUNet

Fig. 1. Skin lesion segmentation results of two state-of-arts

methods, TransUNet [2] and FAT-Net [3], and ours for the

lesions with ambiguous boundaries and noise interferences.

branch [2, 3, 4]. And some other methods improve the Trans-

former based networks with extra boundary information to

address ambiguous boundary problems [5, 6, 7].

However, these methods directly apply Transformer with-

out considering that Transformer’s patch partitioning strategy

can destroy detailed information around boundaries when the

partition lines cross the boundary areas. Especially for skin

lesions in dermoscopic images, the contrast between back-

ground and lesion is very low, resulting in the indistinction

between classes near the lesion boundaries. So the local inter-

pixel correlations around lesion boundaries are still needed to

be strengthened. Accordingly, Local Focus Module (LFM)

is proposed to augment local detailed feature by performing

self-attention within windows surrounding boundaries.

Besides, only focusing on information within windows

ignores global dependencies. Many methods explore corre-

lations between each local window after local window self-

attention to capture global dependencies [8, 9]. But the global

dependencies across each local window are coarse-grained.

And different from the tasks in [8, 9], there are some noise

interferences, such hair, and low contrasts between back-

grounds and lesions in skin lesion images. Thus, fine-grained

global information is more needed to distinguish between

lesions and backgrounds. As is known, the pixel has more

finer-grained information than local window. Accordingly,

we proposed the Global Augmentation Module (GAM) to

augment global context by capturing the correlations between

local windows and global pixel representation. The global



pixel representation can be adaptively learned by a linear

layer.

The two modules, LFM and GAM, are integrated to

Transformer encoder, leading to a new skin lesion seg-

mentation network, Local-Global Augmentation Network

(LGANet). Dense concatenations are adopted as decoder for

final prediction. The main contributions can be summarized

as follows:

• A local detailed information augmentation module, LFM,

which learns local inter-pixel correlations surrounding

boundaries to augment local context.

• A global context augmentation module, GAM, which

learns global context at a finer level to further augment

global dependencies.

• A deep skin lesion segmentation network, LGA, which

integrates LFM and GAM into the Transformer encoder

for more accurate segmentation of skin lesion images.
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Fig. 2. The structure of the proposed LGANet. LFM

and GAM are integrated into the Transformer encoder based

framework to learn local detailed information around bound-

ary and augment global context respectively, where dense

concatenations are used for final pixel-level prediction.

2. METHOD

The architecture of the proposed method is shown in Fig. 2.

Transformer is adopted as the encoder to extract robust fea-

tures due to its stronger feature representation ability than

convolution neural network (CNN) [10, 11]. Then the out-

put feature maps of last three stages are input to LFM and

GAM in sequence. Here, the output features of first stage are

too coarse to consider. LFM can enhance local detailed fea-

ture representation around boundary regions to make up for

the loss of local information caused by Transformer’s patch

partitioning strategy. GAM can further strengthen global de-

pendency at a finer level. The combination of these two mod-

ules can improve the feature representation ability. Finally,

the processed feature maps are fused by dense concatenation

for pixel-level prediction.

2.1. Local Focus Module

Transformer’s patch partitioning strategy leads to the de-

struction of detailed information around partition lines, espe-

cially for boundary regions. Therefore, we propose the LFM

(Fig. 3), focusing on the local neighborhood of lesion edges

to enhance local context around boundary regions.

The core of LFM is to conduct Self-Attention (SA) [12]

within boundary windows. Different from the method in [13],

the boundary windows are generated in a supervised man-

ner in our method. Ground truth is divided to several non-

overlapped windows. A binary matrix is generated accord-

ing to the principle: The value is 1 whenever there are both

backgrounds and lesions in windows; otherwise, the value is

0. This binary matrix is taken as supervision to generate the

score map, which guides the network to choose the boundary

windows.

The input feature map Fi ∈ R
c×h×w(i = 2, 3, 4) is firstly

reduced to be one channel by 1× 1 convolution C1×1. Then,

we use adaptive average pooling operation to divide the fea-

ture map into h
s × w

s non-overlapped windows whose sizes

are set to s (s is four in our experiment). Finally, the score

map M ∈ R
h
s ×w

s of windows are predicted after the Sigmoid
activation:

M = O
(
P h

s ×w
s

(C1×1 (Fi)
))

, (1)

where O and P indicate Sigmoid function and adaptive av-

erage pooling operation respectively.

Finally, boundary windows can be located according to

the score map. Windows with higher scores are more likely

to be boundary windows. In this paper, we set the threshold to

0.5. Then Self-Attention is applied inside the windows with

the scores of greater than the threshold.

2.2. Global Augmentation Module

Global context is also important. However, the coarse-grained

global information captured by computing correlations across

local windows after local window attention is insufficient for

skin lesion images because there are some noise interferences

in skin lesion images, i.e., they need more finer-grained global

information. To this end, GAM (Fig. 3) is designed to aug-

ment global context by capture the correlations between local

windows and global pixel representation.

Fl ∈ R
c×h×w is the output feature map of LFM. Fl is

firstly flattened to Ff ∈ R
c×n, where n = h × w. And at

the same time, in order to obtain the information represen-

tation of the local window, tokens inside each window in Fl

are aggregated into the global token using the method in [9].

Assume that T ∈ R
l×c being the aggregated tokens, where

l = h
s × w

s is the number of tokens.

Individual pixels do not contain global information. Thus,

we conduct information diffusion across pixels by a linear
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Fig. 3. The structure of LFM and GAM. The left is the structure of LFM and the right is the structure of GAM. The features

are firstly processed by LFM to enhance the local context around boundary. Then, they are input to GAM to strengthen global

context at a finer level.

layer L to obtain global pixel representation,

F̂f = L (Ff ) . (2)

Then, in order to enable the local token features to be

more representative and informative, the cross-attention is

conducted between the aggregated tokens and the global

pixel representation,

A (Ff , T ) = Q (T )K
(
F̂f

)T

, (3)

To = S
(
A
(
F̂f , T

))
V
(
F̂f

)
, (4)

where Q,K and V represent query, key and value mappings

respectively. And S represents Softmax. In this way, the ex-

tracted global information is also finer. Finally, To is reshaped

and up-sampled to Fo whose size is same as Fl.

2.3. Loss Function

To supervise the score map, the binary cross-entropy (BCE)

loss is adopted. And for the supervision of final prediction,

the combination of weighted binary cross-entropy (WBCE)

loss and weighted Intersection over Union (WIoU) loss are

also taken. The overall loss is set to be the weighted average

of the losses from both predictions,

Lall = 0.7 ·Lp + 0.1 ·Ls
(2) + 0.1 ·Ls

(3) + 0.1 ·Ls
(4), (5)

where Lp and L
(i)
s (i = 2, 3, 4) are the losses for final predic-

tion and the corresponding score map respectively.

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics

Datasets The propose method is evaluated on two public

skin lesion segmentation datasets: ISIC 2016 [14] and ISIC

2018 [15]. The same dataset division policy as [3] is adopted

for fair comparison. ISIC 2016 contains 1279 RGB skin le-

sions images, of which 900 are randomly chosen for training

and 379 are used for testing. ISIC 2018 contains 2594 RGB

skin lesions images. We randomly select 1815 samples for

training set, 259 samples for validation set and 520 samples

191 for testing set.

Evaluation Metrics Six widely used metrics are em-

ployed to quantitatively evaluate the segmentation perfor-

mances, including the Sensitivity (SE), Specificity (SP),

Intersection over Union (IoU), Dice Similarity Coefficient

(DSC), Accuracy (ACC) and Average Symmetric Surface

Distance (ASSD).

(a) Image (b) GT (c) Ours (d) U-Net (e) AttU-Net (f) CPFNet (g) TransUNet (h) FAT-Net (i) TMUNet

Fig. 4. Qualitative comparison of the segmentation results

between different methods.

3.2. Implementation Details

Our framework is built by PyTorch with a single NVIDIA

GeForce GTX 2080Ti GPU. The epoch is 100 and Adam is



Table 1. Quantitative comparisons of the segmentation re-

sults on two benchmarks. Best results are shown in bold.
Method DSC↑ IoU↑ ACC↑ SE↑ SP↑ ASSD↓

IS
IC

2
0
1
6

U-Net [16] 88.84 81.84 94.66 90.16 96.56 7.54

AttU-Net [17] 88.75 81.58 94.14 90.31 96.45 7.62

CPFNet [18] 90.23 83.81 95.09 92.11 95.91 7.57

DAGAN [19] 90.85 84.42 95.82 92.28 95.68 –

TransUNet [2] 92.12 85.40 95.49 93.69 96.19 4.92

FAT-Net [3] 91.59 85.30 96.04 92.59 96.02 5.01

TMUNet [7] 92.20 85.54 95.60 92.32 96.89 5.37

C2FTrans [13] 91.50 84.33 95.27 91.66 96.99 –

Ours 93.88 88.47 96.55 94.09 97.51 4.18

Method DSC↑ IoU↑ ACC↑ SE↑ SP↑ ASSD↓

IS
IC

2
0
1
8

U-Net [16] 85.45 77.33 94.04 88.00 96.97 7.71

AttU-Net [17] 85.66 77.64 93.76 86.00 98.26 6.98

CPFNet [18] 87.69 79.88 94.96 89.53 96.55 7.21

DAGAN [19] 88.07 81.13 93.24 90.72 95.88 –

TransUNet [2] 88.88 81.85 95.94 90.08 97.89 5.33

FAT-Net [3] 89.03 82.02 95.78 91.00 96.99 5.06

TMUNet [7] 90.59 82.80 96.03 90.38 97.46 6.02

C2FTrans [13] 90.76 84.64 96.76 91.22 97.74 –

Ours 91.64 84.56 96.42 89.96 98.22 4.58

the optimizer with an initial learning rate of 10−4. The batch

size is set to 16 for all datasets. All images are re-sized to

256×256 as input with various data augmentations, including

vertical, horizontal flip, and random rotation.

3.3. Comparison with other models

Some state-of-the-arts methods are compared, including four

CNN-based models (U-Net [16], AttU-Net [17], CPFNet [18]

and DAGAN [19]) and four Transformer-based models (Tran-

sUNet [2], FAT-Net [3], TMUNet [7] and C2FTrans [13]).

The quantitative results of existing methods are reported in

[3, 7, 13], except for TransUNet whose ASSDs are computed

by the officially released codes.

Quantitative results Table 1 shows the quantitative

comparison results. Obviously, our model achieves the

highest scores in all metrics on ISIC 2016. Compared to

C2FTrans, There are a slight decrease on ISIC 2018 in IoU,

ACC and SE. And the highest scores in DSC and ASSD

show that our method is more accurate for both regions and

boundaries.

Qualitative results Fig. 4 shows that several examples

of segmentation results from different methods. These im-

ages have ambiguous boundaries or noise interferences (see

the first row in Fig. 4). It is observed that our result is more

accurate and closer to the ground truth than others.

Table 2. Quantitative results for ablation study. Best results

are shown in bold.

Method
ISIC 2016 ISIC 2018

DSC↑ IoU↑ ASSD↓ DSC↑ IoU↑ ASSD↓
Baseline 93.67 88.09 4.28 91.39 84.15 4.99

Baseline + LFM 93.77 88.28 4.24 91.42 84.20 4.84

Baseline + GAM 93.68 88.11 4.24 91.47 84.28 4.77

Baseline + LFM+ GAM 93.88 88.47 4.18 91.64 84.56 4.58

Table 3. Quantitative results for different window sizes. Best

results are shown in bold.

Window size
ISIC 2016 ISIC 2018

DSC↑ IoU↑ ASSD↓ DSC↑ IoU↑ ASSD↓
s = 2 93.65 88.05 4.21 91.47 84.29 4.77

s = 4 93.88 88.47 4.18 91.64 84.56 4.58
s = 8 93.53 86.67 4.50 91.34 84.05 4.77

3.4. Ablation studies

To evaluate the performances of each module in our proposed

method, we compare our model with its three variants in Ta-

ble 2. PVT v2 with additional dense concatenation is taken

as the baseline. LFM and GAM are added to the baseline

as different configurations. Table 2 shows that either LFM

or GAM improves the performance of Baseline, demonstrat-

ing the effectiveness of each individual component. Our full

model achieves the best performances, which demonstrates

the necessity of taking both LEM and GAM.

(a) Image (b) GT (c) Input (d) LFM       (e) GAM

Fig. 5. The feature augmentation by our proposed modules.

(a) Image; (b) GT; (c) Input represents the input feature map;

(d) LFM denotes feature maps output by LFM; (e) GAM rep-

resents output feature map by GAM.

Fig. 5 shows the feature augmentation results after apply-

ing LFM and GAM. After LFM, the boundary contour is more

clearer (Fig. 5(c)) and the responses of lesions features are

more stronger after GAM (Fig. 5(d)).

We also study the influence of different window sizes in

LFM (Table 3). As can been seen, s = 4 achieves the best

performance on both ISIC 2016 and ISIC 2018. Therefore, s
is set to four in our model.

4. CONCLUSION

This paper proposes a novel framework, LGANet, for skin le-

sion segmentation. Particularly, two module, LFM and GAM

are constructed. LFM aims at learning local inter-pixel corre-

lations to augment local detailed information around bound-

ary regions. While GAM aims at learning global context at

a finer level to augment global information. Combing LFM

and GAM makes LGANet more efficient in processing skin

lesion images. Experimental results demonstrate the efficacy

of the proposed method.
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