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a b s t r a c t

Recently, phishing emerges as one of the biggest threats to human’s daily networking environments.
Phishing attackers disguise illegal URLs as normal ones to steal user’s private information with
the social engineering techniques, such as emails and SMS, which calls for an effective method of
preventing phishing attacks to relieve the loss by them. Neural networks can be used to detect and
prevent phishing attacks because of their strong active learning abilities from massive datasets and
high accuracy in data classification. However, duplicate points in the public datasets and negative and
useless features in the feature vectors will trap the training of the neural networks into the problem
of over-fitting, which will make the trained classifier weak when detect phishing websites. This paper
proposes DTOF-ANN (Decision Tree and Optimal Features based Artificial Neural Network) to tackle
this shortcoming, which is a neural-network phishing detection model based on decision tree and
optimal feature selection. First, the traditional K-medoids clustering algorithm is improved with an
incremental selection of initial centers to remove the duplicate points from the public datasets. Then,
an optimal feature selection algorithm based on the new defined feature evaluation index, decision
tree and local search method is designed to prune out the negative and useless features. Finally, the
optimal structure of the neural network classifier is constructed through properly adjusting parameters
and trained by the selected optimal features. Experimental results have demonstrated that DTOF-ANN
exhibits higher performance than many of the existing methods.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Phishing is a cybercrime which sends malicious links, usually
isguised as legal ones, through spams or social networks to
nduce users to visit and obtain their private information [1],
uch as usernames, passwords and social security numbers, and
hen phishing attackers can obtain the money or other benefits.
hishing is now one of the biggest threats to human’s daily
etworking environments. According to the report of the APWG
Anti-Phishing Working Group), in the first quarter of 2019, there
re a total of 180768 phishing attacks be detected globally [2].
hat is more, the number of phishing attacks is growing rapidly:
s the report finds, the number of phishing attacks monthly
ncreased by 3745% on average from 2004 to the first quarter
f 2019. Effective methods and techniques for detecting and
reventing phishing attacks are urgently needed.
Typical phishing attacks are launched by sending emails that

eem to be normal to end users. These emails usually ask the
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victims to update their private information by the provided URLs.
Other kinds of phishing URLs include peer-to-peer file sharing,
blogs, forums, instant message and so on [3]. Perhaps the most
direct method is to educate end users to recognize and prevent
phishing URLs [4]. However, private information may also be
leaked by the unaware or careless behaviors of end users [5],
especially considering this increasing number of phishing attacks.

Therefore, there is a growing need for automatic methods to
protect users from malicious websites. Existing automatic meth-
ods can be divided into four types: blacklisting, heuristic detec-
tion, visual similarity checking and machine learning [6]. Black-
listing is to phish URLs which are already detected. It does not
analyze the content of phishing websites and thus is of high
efficiency. However, this type of method is difficult to cope with
the newly emerged URLs [7]. The heuristic detection methods
generally assign proper signatures on phishing URLs [8], which
will raise warnings if malicious behaviors are detected when
scanning the assigned signatures of target websites. They can deal
with the newly emerged phishing URLs and generate smaller false
positive rate than the blacklisting methods. However, phishing
attackers can bypass the constructed filters after acquiring the
heuristic policies. In this case, the heuristic detection method will
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be invalidated [9]. For visual similarity checking which visually
compares the potential phishing websites with the original legal
ones, if this visual similarity is less than a given threshold, the
target website is marked as phishing one. This type of methods is
accurate in phishing detection. However, its image matching step
may incur huge computational load [10].

Machine learning type of methods are now most extensively
studied. Common features, such as the information related to
the URLs, the structure of the websites and the features of the
JavaScript, are collected first to represent the phishing URLs and
their related websites. Then, phishing datasets are collected based
on the selected features. Subsequently, the underlying classi-
fiers are trained to detect the phishing websites. Existing clas-
sifiers include the Bayes model [11], Support Vector Machine
(SVM) [12], Association Roles [13], Logistic Regression (LR) [14],
neural networks [15] and so on. The machine learning type can
automatically learn to classify data robustly, however, it may
include huge number of duplicate points in the public phishing
datasets with useless and the negative features in the feature
vectors, and thus trap the machine learning method into the
problem of over-fitting [16]. Excessive features will also enlarge
the scale of the final classifiers, while the useless and the negative
features will further degrade the detection accuracy of the final
classifiers seriously.

This paper proposes DTOF-ANN, a neural network phishing
detection model based on decision tree and optimal feature se-
lection, to tackle these shortcomings. In this model, the original
phishing dataset is first refined by the improved K-medoids clus-
tering algorithm. Then, the optimal feature selection algorithm
that based on the new defined evaluation index, the decision
tree and the local search method is designed to construct the
optimal feature vector. Finally, the optimal feature vector is fed
to the trained neural network classifier to detect the phishing
attacks. Generally speaking, our contributions can be summarized
as follows:

(1) Improve the traditional K-medoids clustering algorithm
for refining phishing datasets. The traditional K-medoids
algorithm requires to specify the number of clusters (K ) for
selecting the corresponding initial clustering centers ran-
domly. However, as an unsupervised method, this number
is rarely unknown beforehand for a dataset. Meanwhile,
randomly selection of all the initial clustering centers may
lead to poor clustering accuracy and huge calculation. We
improve the traditional K-medoids algorithm with an in-
cremental method for selecting the initial clustering cen-
ters (medoids). All but the first initial centers are incre-
mentally selected based on the Euclidean distances, so that
the number of clusters is no longer set at the beginning of
the clustering process. This improved K-medoids cluster-
ing algorithm can help obtaining a refined set of training
instances that can represent the original dataset well.

(2) Propose a new feature evaluation index, f_Value. Existing
machine learning-based phishing detection systems gen-
erally use phishing features to represent the target URLs
and their related websites for training the underlying clas-
sifiers. Different features have different effects on the clas-
sifier performance, however, useless and the negative fea-
tures will seriously degrade the detection accuracy of the
final classifiers. Therefore, this paper proposes f_Value, a
new feature evaluation index to evaluate the impact of dif-
ferent features on the phishing detection. f_Value is defined
based on the Gini coefficient [17] and the decision tree,
and can effectively separate positive, useless and negative

features.
(3) Design a new feature selection algorithm. Generally speak-
ing, adequate quantity of features and approach of choos-
ing best ones decides the good performance of a machine
learning classifier [18]. Many feature collection methods
are proposed, for example, the Off-the-Hook [19] collects
more than 200 features related phishing URLs and their
related websites. However, excessive features will enlarge
the scale and bring complex computation of the final clas-
sifier. Furthermore, they may contain useless and negative
ones which are harmful to the classifier performance. We
propose a new optimal feature selection algorithm based
on the new index f_Value, decision tree and local search
method to select the optimal features for the underlying
classifier.

The remainder of this paper is organized as follows: Section 2
discusses the related work. Section 3 details DTOF-ANN with Sec-
tion 4 presenting the experimental results. Section 5 concludes
this paper and outlines the future work.

2. Related work

Many anti-phishing methods from different aspects have been
proposed. One of the easiest ways to prevent phishing attacks,
blacklisting, is largely used in industries. The Google Safe Brows-
ing API [20] is a representative whose blacklist is constructed on
the previously detected phishing websites. It does not provide
the protection against zero-hour phishing attacks. Any changes
to a stored phishing URL may result in no match. Therefore,
this method cannot deal with new emerged phishing attacks.
This is also why the blacklist of the Google Safe Browsing API
constantly updates. In the academic field, Ma et al. [7] used the
learning-based method to update the blacklist.

The heuristic method is also used in phishing detection. The
Cantina [12] first extracts the top K words from the page content
ranked by the term frequency and inverse document frequency
(TF–IDF) metric. Then, the selected top K words are compared
with the webpage domain keyword in Google. This model works
well for the webpage composed of text content. However, its
detection accuracy will degrade when the text in the webpage
is replaced by the images. The PhishiNet [21] integrates the
blacklisting technique into the heuristic method. It produces mul-
tiple variations of the same URL via 5 different URL variation
heuristics to resolve the growing change of phishing URLs, i.e. re-
placing the top-level domain, directory structure similarity, IP
address equivalence, query string substitution and brand name
equivalence.

For visual similarity-based methods, Zhang et al. [22] made
use of the informative spatial layout characteristics of web pages,
where the spatial layout features extracted from web pages are
organized as rectangle blocks to define page similarity. Phishing
webpage can be detected by the page similarity degree. Rao
et al. [23] proposed an approach based on the combination of
the whitelist and the visual similarity techniques to defend the
zero-day phishing attacks. This method extracts discriminative
features from websites at first, which are then used to compute
the similarity between legitimate and suspicious pages. The vi-
sual similarity technique is accurate in phishing detection. But
this method cannot properly deal with the continue changing
phishing webpages.

Machine learning based methods is widely used in phishing
detection, thanks to the strong ability of data processing. Gu
et al. [11] used the Bayes model and the SVM model to classify
phishing websites based on the extracted features from URLs.
Pan and Ding [24] designed an SVM-based algorithm for the

phishing detection, which is based on the differences among the
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ID of the websites, the structure of the websites and the HTTP
transactions. He et al. [25] designed the TF–IDF feature extracting
method to obtain 12 features related to the websites and then
trained the underlying SVM classifier. Similar SVM model was
also proposed by Zouina and Outtaj [26]. Martin et al. [27] con-
structed a neural network model with features extracted from
‘‘Anti-Phishing Working Group’’ and ‘‘PhishTank’’. Mohammad
et al. [28] extracted 18 features on phishing websites to training
the deep neural network classifier. Nguyen et al. [29] proposed
a dynamic phishing detection method based on the single layer
artificial neural network.

Most machine learning methods are based on the feature
extraction which may contribute to the high accuracy on phishing
detection. For example, the Off-the-Hook [19] extracts more than
200 features. However, excessive number of features will increase
the scale of the final classifiers and, consequently, may trap the
machine learning methods into over-fitting. Some methods target
the optimal features for the underlying classifier. Chiew et al. [30]
proposed the hybrid ensemble feature selection method (HEFS)
to select the most important features. Toolan and Carthy [31]
introduced the information gain selection method to select op-
timal features from 40 features related to phishing detection,
while Zabihimayvan and Doran [32] used the fuzzy rough set
to select optimal features. OFS-NN [6] integrates the FVV index
to evaluate the importance of each feature. Our proposed DTOF-
ANN adopts the artificial neural network for the construction of
the underlying classifier. The importance of different features is
evaluated first with the novel index f_Value and then the optimal
feature selection algorithm is designed to construct the optimal
feature vector for the underlying neural network classifier.

3. Our proposed DTOF-ANN

Fig. 1 shows the overall workflow of DTOF-ANN, which can
be divided into two stages: the training stage and the testing
stage. The former stage first introduces the improved K-medoids
algorithm to delete the duplicate data points in the open phish-
ing datasets. Then, the optimal feature selection algorithm is
designed to construct the optimal feature vector for the under-
lying neural network classifier, where the new index, f_Value, is
defined to evaluate the importance of phishing features of data
points in the phishing datasets. After, the CART (Classification
And Regression Trees) decision tree and the local search method
are combined to design the optimal feature selection algorithm.
Lastly, datasets with the constructed optimal feature vector for
each of its data point is used to train the neural network classifier.

In the latter stage, vectors composed of the optimal features
are input to the trained neural network classifier. As shown in
Fig. 1, the Blacklist module improves the performance, which is
constructed by selecting data points from the Alexa website and
the PhishTank website. The tested URLs are firstly checked by
querying if they are already existed in the Blacklist. The target
URLs are directly marked as the phishing ones if so, and, other-
wise, the optimal feature vectors of the corresponding URLs are
processed by the trained neural network classifier. The detected
phishing URLs are also stored in the Blacklist to avoid the same
kinds of URL in the future processed repeatedly.

3.1. Original phishing datasets refining

Public phishing datasets are usually used to train the underly-
ing classifiers. Here, we adopt the K-medoids clustering algorithm
to prune points and thus ease the training workload of the neural
network classifier. The number of clusters (K ) needs to be set
at first in the traditional K-medoids algorithm and then all the

corresponding initial clustering centers are randomly selected
according to it. However, randomly selection of all the initial
clustering centers may bring poor clustering accuracy and high
computation expense. The number of clusters in the phishing
datasets is usually much bigger than the other kinds of datasets
and even a single URL may be taken as a cluster. In addition,
public phishing datasets are flooded with duplicate (noise) data
points not included in any cluster. So, it is difficult to set K for the
phishing datasets before the K-medoids algorithm starts running.

Therefore, we improve the traditional K-medoids algorithm
with the incremental method for selecting the initial clustering
centers (medoids), i.e., except for the first initial clustering center,
the other initial centers are incrementally selected based on the
Euclidean distance (Definition 1). Consequently, the number of
clusters are no longer set at the beginning of the clustering
process.

Definition 1 (Euclidean Distance). Suppose the n-data-point phish-
ing sample space S = {(X1, y1), (X2, y2), . . . , (Xn, yn)} with each
m-attribute data point Xi = (xi1, xi2, . . . , xim) and yi be the classifi-
cation result (legal or illegal) of Xi by a phishing website detection
tool. The Euclidean distance between point Xi and point Xj can be
formulated as

d(Xi, Xj) =
√∑m

p

⏐⏐xip − xjp
⏐⏐2 i, j = 1, . . . , n . (1)

In the improved algorithm, the first initial clustering center is
randomly selected. Then the remaining initial clustering centers
are incrementally selected from the existing centers. Specifically,
if a data point Xi is taken as a new clustering center, the following
condition should to be satisfied:

d (Xi, Center) = max
{
d
(
Xi, Centerj

)
> 0|Centerj ∈ Center

}
, (2)

where: Xi∈S-Center; Center is the set of clustering centers already
selected; d(Xi, Center j)>0 for ensuring no duplicate data point is
taken as the new clustering center.

The remaining data points can be set to the corresponding
clusters by calculating the minimal Euclidean distances with the
initial clustering centers of all clusters. Specifically, for a data
point Xi belonging to the Cluster Ci, the following condition
should to be satisfied:

d (Xi, Center) = min
{
d
(
Xi, Centerj

)
> 0|Centerj ∈ Center

}
, (3)

where d(Xi, Center j)>0, ensuring that no duplicate data point is
put to a cluster.

The final center of each cluster is adjusted with the initial
clustering center and the remaining data points, where the initial
center is replaced with the data point that has the minimal
distance to all the other data points of this cluster.

Now the improved K-medoids clustering algorithm (Fig. 2)
to refine the original phishing datasets can be obtained from
the above analysis. In this algorithm, steps (1) and (2) randomly
estimate the first initial cluster center. Step (3) computes the
remainder initial centers, where the remainder initial clustering
centers are incrementally selected as far as from the existing
centers. ‘‘d(Xi, Center)>0’’ in the ‘‘if ’’condition is imposed so
that the remaining duplicate data points of the selected initial
centers are not selected as new clustering centers. For example,
the distance between X and its duplicate point X’ (d(X, X’)) is 0 if
a data point X is selected as the clustering initial center. X’ cannot
been selected as a new center according to d(Xi, Center)>0. Once
the cluster centers are specified, step (4) puts the other points to
the corresponding clusters. ‘‘d(Xi, Center i)>0’’ in the ‘‘if ’’condition
of step (4) is set with the same reason as step (3). Finally, step (5)
updates the final cluster centers by re-computing the distance of

all points in different clusters.
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Fig. 1. The overall workflow of DTOF-ANN.
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Fig. 2. The improved K-medoids algorithm for refining phishing datasets.

.2. Optimal feature selection

In this part, the new index (f_Value) based on the Gini co-
fficient [17] and CART algorithm is firstly defined to measure
he feature importance on the phishing detection. Then, the new
lgorithm that combines CART and the local search method is
esigned to construct the optimal feature vector based on this
ew index. This vector will be taken as the input to the underlying
eural network classifier.

.2.1. Classification of features
We classify phishing features into four categories, the ad-

ress bar features, the abnormal behavior features, the HTML and
avaScript features, and the domain features. In the training phase
f DTOF-ANN, optimal subset of these features is extracted from
he datasets and stored in the feature vectors for training the
etwork. In the testing phase, optimal features are fed to the
eural network to determine behavior (phishing or legal) of the
arget website.

For DTOF-ANN, there is no limitation on the number of fea-
ures as long as they fall into the above four categories. Presently,
0 phishing features from the four categories are collected and
tored in the vector of F = <f , f , . . . , f >. For each feature
1 2 30
i (i∈ [1,30]), its value may be one of the three, −1, 0 and 1,
hich means legal, potential phishing and most likely phishing
espectively.

1) Address bar features. The address bar features are directly or
ndirectly extracted from the website URLs. Many of the phishing
ttacks are launched by taking advantages of these features. We
ollect 12 address bar features, f1, f2, . . . , f12, stored in the vector
F.

• URL containing IP address (f 1). Phishing attackers usually
replace the domain names with the IP addresses to avoid
registering domain names. If the domain name of a website’s
URL is an IP address, this website is a potential phishing one
and, consequently, f1 is set to 1. Otherwise, it is set to −1.
• Long URL (f 2). Phishing attackers usually use long URLs to

hide the suspicious information. Generally, the length of a
typical normal URL is less than 55 characters. So, if the
length of the target URL is in the interval [0, 54], f2 is set
to −1. If this length is in the interval [55, 75], f2 is set to 0.
Otherwise, f2 is set to 1.
• Short URL (f 3). Phishing attackers can reduce the length of

the URL at first. Then, suspicious websites can be linked by
the ‘‘http redirection’’ of the short domain name of the URL.
So, if the target URL uses the short address service, f3 is set
to 1. Otherwise, it is set to −1.
• URL including ‘@’ (f 4). The URL of a normal website does not

include an ‘@’. If the target URL includes the ‘@’, f4 is set to
1. Otherwise, it is set to −1.
• Position of the ‘//’ (f 5). URLs are started with the strings of

‘‘http’’ or ‘‘https’’. Based on the structures of normal URLs,
the ‘//’ is situated at the 7th position of the URLs. So, if the
‘//’ is situated behind the 7th character of the target URL, f5
is set to 1. Otherwise, it is set to −1.
• URL including ‘-’ (f 6). Legal URLs rarely contain a ‘-’. Phishing

attackers usually hide the ‘-’ in the domain names to deceive
the users as the normal websites. If the target URL contains
the ‘-’ in the domain names, f6 is set to 1. Otherwise, it is set
to −1.
• Number of ‘.’ in the main domain name (f 7). The number

of ‘.’ in the main domain name specifies the number of
subdomains of the target URL. More subdomains mean more
suspicious of the target website. If this number is 1, 2, or
more than 2, f7 is set to −1, 0 or 1 respectively.
• http protocol and SLL certificate statues (f 8). Each time the

sensitive information is transmitted, the legal websites will
use the safety domain names. The SLL is the digital certifi-
cate in the server. However, phishing websites usually have
no SLL certificate. If the target website uses http protocol
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and the age of the corresponding SLL certificate issued by
the trusted or untrusted person is no less than 1 year, f8 is
set to −1 or 0, respectively. Otherwise, f8 is set to 1.
• Expiration time of registered domain name (f 9). Most of the

phishing websites are facing the problem of domain names
expiration due to short lifecycles. If the domain expiration
time is no more than 1 year, the corresponding website can
be taken as a phishing website, i.e., f9 is set to 1. Otherwise,
f9 is set to −1.
• Sources of ‘‘favicon/icon’’ (f 10). Icons of a legal website are

generally from the same domain. If the icons are loaded
from the other domains other than from the domains spec-
ified by the target URL, the corresponding website is a
potential phishing website with f10 set to 1. Otherwise, f10
is set to −1.
• Opening ports of websites (f 11). Normally, most of ports

are closed by firewalls, proxy servers and NAT (Network
Address Translation) servers with only the selected ports
opened. The IDs of the default closed port are: 21 (File Trans-
fer Protocol), 22 (Secure Shell), 23 (Telnet), 445 (Server Mes-
sage Block), 1433 (MSSQL Database), 1521 (Oracle Database),
3306 (MySQL Database) and 3389 (Remote Desktop). The
target website may be a phishing site if the corresponding
ports listed above are opened. f11 is used to specify this
feature: 1 for opened with −1 for closed.
• Domain names of URL including ‘‘https’’ (f 12). URLs of the

target website with domain names contain the ‘‘https’’ are
suspicious. If the domain names contain this string, f12 is set
to 1. Otherwise, f12 is set to −1.

2) Abnormal behavior features. Abnormal behavior features can
e extracted by analyzing the source codes of the correspond-
ng webpages. 6 abnormal behavior features, f13, f14, . . . , f18, are
xtracted and stored in F.

• Source of requested objects (f 13). Most of objects (graphics,
videos and sounds) share the same domain in the legal web-
sites. Objects from a greater number of different domains
means more dangerous for the corresponding websites. If
the ratio of different request objects in a website is smaller
than 21% of all domains, f13 is set to −1; if this ratio is less
than 61%, f13 is set to 0; and, otherwise, it is set to 1.
• Direction of ‘‘Anchor’’ (f 14). An ‘‘Anchor’’ is defined by the <a>

tag in the HTML. Generally, a greater number of different
domain names of elements in the <a> tags means more
dangerous for the target website. If the ratio of ‘‘Anchor’’ is
less than 31%, f14 is set to −1; if this ratio is greater than
67%, f14 is set to 1; and, otherwise, f14 is set to 0.
• Links in tags of HTML documents (f 15). Links in the tags, such

as <meta>, <script> and <link>, are from a small number
of domains in the normal websites. If the links in these
tags point to many different domains, the target website
is suspicious. If the ratio of different links in these tags is
smaller than 17%, f15 is set to −1; if this ratio is greater than
81%, f15 is set to 1; and, otherwise, f15 is set to 0.
• Contents of the SFH (f 16). If the SFH (Server Form Handler)

includes the null character or the ‘‘about:blank’’ string, the
target website is suspicious and consequently, f16 is set to
0; if the domain names in the SFH are different from those
of the target website, this website is dangerous and then f16
is set to 1; and, otherwise, f16 is set to −1.
• Email in the web server script (f 17). Web forms allow the

personal information in the server to be submitted to end
users. However, phishing attackers may use this feature
to steal sensitive information. By embedding functions of
‘‘mail()’’ or ‘‘mailto()’’ in the web server script, sensitive
information can be redirected to the emails of the phishing
attackers. If the target website uses the two functions, f17 is
set to 1. Otherwise, it is set to −1.
• ‘‘whois’’ information (f 18). ‘‘whois’’ information of website

inquires the transport protocols of the IP of the domain
names and the information of the owners. If the information
in the ‘‘whois’’ database matches the ones of the target
website, f18 is set to −1. Otherwise, it is set to 1.

3) HTML and JavaScript features. These features are extracted
rom the source codes of the HTML and JavaScript documents. 5
TML and JavaScript features, f19, f20, . . . , f23, are extracted and
tored in F.

• Number of webpage’s redirections (f 19). Phishing attackers
can use the page redirections to create the links pointing to
the malicious webpages. The number of page redirections
in a normal website is less than 2. So, if the number of page
redirections is more than 3, this feature (f19) is set to 1; if
this number is less than 1, f19 is set to −1; and, otherwise,
f19 is set to 0.
• Existence of ‘‘onMouseOver’’ event (f 20). Phishing attackers

can use JavaScript to display the forged URL in the status
bar to cheat users. If the source code of the target website
contains the ‘‘onMouseOver’’ event with a changed status
bar, this website can be taken as a phishing website and f20
is set to 1. Otherwise, f20 is set to −1.
• Right click of mouse operation (f 21). Phishing attackers usu-

ally prohibit the mouse right click operation to disguise the
source codes of the malicious websites. If the right click
operation is prohibited (event.button==2), f21 is set to 1.
Otherwise, it is set to −1.
• Usage of ‘‘pop-up window’’ (f 22). Phishing attackers can ac-

quire the private information of end users through the ‘‘pop-
up window’’. If it is used, f22 is set to 1. Otherwise, it is set
to −1.
• Attribute of ‘‘IFrame’’ (f 23). ‘‘IFrame’’ is a HTML tag used

to display the contents of other websites to the current
one. Phishing attackers can use the ‘‘IFrame’’ to hide these
contents. If this tag is used, f23 is set to 1. Otherwise, f23 is
set to −1.

4) Domain features. The domain features are collected by check-
ng the domain names of URL of the target websites. 7 domain
eatures, f24, f25, . . . , f30, are collected and stored in F.

• Age of registered domain names (f 24). Phishing websites gen-
erally have short lifecycles. After checking the ‘‘whois’’
database of the domain names, we find that the age of
domain names of legal websites are more than 6 months.
If the age of the registered name is shorter than 6 months,
f24 is set to1. Otherwise, it is set to −1.
• DNS record (f 25). For a phishing website, the ‘‘whois’’

database cannot find the corresponding DNS record it de-
clared before. If the DSN record is empty or cannot be found
in the ‘‘whois’’ database, the target website is a potential
phishing website and then f25 is set to 1. Otherwise, f25 is
set to −1.
• Traffic of websites (f 26). Due to short lifecycles, the visit num-

ber of a phishing website is relatively small. Alexa database
records the global comprehensive ranking of website traf-
fics. If the Alexa ranking of the target website is the top
100000, f26 is set to −1; if the target website is in the Alexa
database but not the top 100000 websites, f26 is set to 0;
and, otherwise, it is set to 1.
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• PageRank of websites (f 27). The PageRank is an important
index on evaluating the importance of a website. The value
of PageRank is in the interval [0, 1]. The bigger value of the
PageRank, the more important of the target website is. Most
of the phishing websites have no PageRank. Therefore, for a
given website, if the PageRank value is smaller than 0.2, f27
is set to 1. Otherwise, f27 is set to −1.
• Google index of websites (f 28). The website included by the

Google search engine can be appeared in the search re-
sults. However, phishing websites are rarely indexed by
the Google due to short lifecycles. If the target website is
included in the Google index, f28 is set to −1. Otherwise, f28
is set to 1.
• Number of links pointing to target webpages (f 29). Phishing

websites generally have no link pointing to its own web-
page. If the number of links pointing to the target webpage
is 0, f29 is set to 1; if this number is smaller than 2, f29 is set
to 0; and, otherwise, it is set to −1.
• PhishTank and StopBadware statistical reports (f 30). The Phish-

Tank and the StopBadware periodically publish the newly
emerged phishing websites, and thus it is important to
check whether the URL of the target website is included the
two statistical reports. If the target URL is in the two reports,
f30 is set to 1. Otherwise, it is set to −1.

.2.2. f_Value index of features
As an impurity splitting method, the Gini coefficient is widely

sed in the decision tree algorithms [17]. In this subsection, the
ini coefficient is firstly extended to process phishing features.
hen, the decision tree can be generated by CART based on the
xtended Gini coefficient of different phishing features. Finally,
he new index f_Value is defined to evaluate the importance of
hishing features. The Gini coefficient can be defined as follows:

efinition 2 (Gini Coefficient). Suppose the sample space S be
ivided into K classes and pkbe the proportion of data points in
lass k. The Gini coefficient of the sample space S is defined as

ini (S) = 1−
K∑

k=1

pk. (4)

For phishing detection, the phishing sample space S is only
ivided into two classes, the phishing ones and the legal ones.
herefore, the value of K is fixed to 2. The Gini coefficient can be
xtended to evaluate the importance of phishing features.

efinition 3 (Gini Coefficient of Phishing Features). Suppose A =
{a1, a2, . . . , am} be the phishing feature set of m data points in
the phishing website sample space S. A given feature a∈A has

possible values as {a1, a2, . . . , aV }. The CART algorithm will
enerate V branch nodes if the feature a divides S, where branch
(v = 1, 2, . . . , V ) contains a set (marked as Sv) of data points
ith the attribute a equal to av . Consequently, the sample space
is divided into V classes as {Sv1 , Sv2 , . . . , SvV }. For each element

Sv in the set of {Sv1 , Sv2 , . . . , SvV }, the Gini coefficient of Sv can
be computed by Eq. (4). Different branch node contains different
number of data points and, therefore, the weight of the branch
node v (v = 1, 2, . . . , V ) is assigned as | Sv

|/| S| . Accordingly,
a branch node will get the higher weight value if it contains
more data points. Then the Gini coefficient of the feature a can
be defined as:

Gini(S, a) =
V∑

v=1

|Sv|

|S|
Gini(Sv). (5)
According to Eq. (5), the Gini coefficients of A can be computed
at first. Then, the optimal division featurea∗with the smallest Gini
coefficient can be:

a∗ = mina∈A{Gini (S, a)} (6)

Now the decision tree can be generated by CART with the
extended Gini coefficient of different phishing features. CART is
widely used in data mining as a reprehensive decision tree learn-
ing method, which adopts the dichotomous recursive technique
to divide the current sample space into two disjoint subsets.
Thus, a binary tree is generated with each non-leaf node having
two branches. Fig. 3 shows the part of the decision tree that
utilizing CART on a phishing dataset (the detailed description of
this dataset (Dataset 1) will be described in Section 4.1). As can be
seen, the branch node with the biggest extended Gini coefficient
is taken as the root of the entire binary tree. We now discuss the
extended Gini coefficient-based f_Value.

Definition 4 (Index of Features, f_Value). To better evaluate the
importance of different features in the phishing detecting, the
new index, f_Value, of a feature a, is defined as follows:

f _Value(a) = (N ∗ Gini (S, a)− Nl ∗ Ginil − Nr ∗ Ginir )/|S| , (7)

here: a is the root of the decision tree; N is the number of data
oints in the root node a; Ginil and Ginir are the Gini coefficients
f the left child and right child of the root node a respectively;
l and Nr are the numbers of data points in the corresponding
odes respectively; |S| specifies the total number of data points
n the sample space S.

f_Value is taken as the criteria for selecting optimal features.
he bigger f_Value of a feature, the more important of this feature
n the phishing detection. If f_Value is 0, this feature is taken as a
seless feature. As defined in Eq. (7), the f_Values (include those
f the negative features) are no less than 0. So, negative features
annot individually be determined by the index values.

efinition 5 (Index for Negatives, ρ). The index ρ for the fea-
ure selection is defined as follows to effectively find negative
eatures:

=
|TimesTem − Timesori|

accTem − accori
(8)

here: Timeori and Accori are the time cost and accuracy of DTOF-
NN when the original features set are utilized respectively;
imetem and Acctem are the time cost and accuracy of the DTOF-
NN respectively when another feature is put to the original
eatures set. According to Eq. (8), Acctem-Accori will smaller than
when a negative feature is put to the original features set.

Combining indexes of f_Value and ρ will lead to delete the
egative features. As will be verified in Section 4.4, the index
alues of negative features are much smaller than those of posi-
ive features. Therefore, features with relatively small f_Value are
elected at first. Then, ρ is used to determine whether they are
he negative features.

.2.3. Algorithm for constructing optimal sensitive vector
As discussed previously, some of the useless and small impact

eatures will bring huge computation or even over-fitting to the
raining of the underlying neural network classifier. In addition,
ome negative features will degrade the performance of the final
lassifier. To prune out these features, we design the new algo-
ithm based on the combination of CART and the local search to
elect the optimal features. The phishing datasets with optimal
eature vector for each data points are taken as the input for
raining and testing the neural network classifier.
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Fig. 3. A decision tree generated by the extended Gini coefficient and CART.
In the new algorithm, CART firstly calculates the index values
of the entire collected features based on the f_Value Eq. (7).
Consequently, a set of features with the highest f_Value are se-
ected as the initial optimal features set. Then, the local search
ethod based on the K-Nearest Neighbor (KNN) is used to get

he accuracy of the initial optimal features set. The accuracy of
he initial optimal features set is taken as the initial solution of
he local search algorithm.

The local search algorithm is often used to find the optimal
olution to optimization problems, which iterates the adjacent
olutions so that the objective function can be optimized step by
tep until convergence [33]. The local search algorithm constructs
he final optimal feature vector for the underlying neural network
lassifier by sequentially analyzing the remainder collected fea-
ures. Specifically, the pseudo code of our new algorithm is shown
n Fig. 4, which will be discussed below.

Step (1) computes the f_Values of all the features of data points
n S by CART. Step (2) gets the initial optimal features and stores
hem in the set Xori. The remainder features are put to the set
rem by the step (3), while step (4) uses the KNN to train the
nitial optimal features and stores the trained accuracy to accori.
tep (5) updates the optimal Xori by sequentially selecting positive
eatures from the Xrem. If the newly added feature increases the
ccuracy of the original Xori, this feature is positive and put to Xori.
therwise, this feature is negative and will not put to Xori. Finally,
he optimal feature vector Fopt is constructed in step (6) based on
he selected optimal feature set. This vector will be taken as the
nput to the underlying neural network classifier.

.3. The neural network classifier

The classifier of the DTOF-ANN model is constructed on ANN
Artificial Neural Network) [15] which is generally composed of
hree parts: the input layer, one or more hidden layers and the
ut layer. The input layer calculates the weights of the put data
ith the hidden layers performing the learning process, while
he output layer generates the final results of ANN. The learning
rocess of ANN is composed of two procedures: the forward
ropagation and the backward propagation. Once the activation
unction detects the input from the input layer, the forward
ropagation processes the data in the hidden layers and generates
he result to the output layer. The backward propagation starts to
ork when it detects the big deviation between the actual output
esults and the expectation values. The backward propagation
teratively adjusts parameters of neural nodes in different layers
ntil the actual results approach the expected ones.
Fig. 4. Algorithm of optimal feature vector construction.

Generally, more layers will bring better classification perfor-
mance. However, more layers may also trap the trained classifier
into over-fitting. Therefore, neural network models with different
hidden layers and different number of neuron units are tested
to train the optimal structure of the underlying classifier. The
optimal structure of the neural network for the phishing detec-
tion can be obtained with iteratively adjusting parameters. Fig. 5
shows part of the results of the experiments. The x-axis repre-
sents the number of neuron units in the corresponding hidden
layers with the y-axis being the accuracy (this metric will be
defined in Section 4) of the neural network. The tested dataset
(Dataset 1) used in this experiment will be presented in Section 4.

The blue polyline in Fig. 5 records the accuracy of the neural
network of the first hidden layer when it incorporates 2 to 60
neuron units. The highest accuracy (0.967) is obtained when the
first hidden layer incorporates 56 neuron units, therefore, the
number of neuron units in this layer is set to 56. The number of
neuron units in the second hidden layer is limited to the interval
[2, 34] based on the configuration of the first hidden layer. As the
orange polyline shown, the highest accuracy (0.969) is obtained
when the second hidden layer incorporates 28 neuron units. So,
the number of neuron units in this layer is set to 28. Based on
the configurations of the first and the second hidden layers, the
number of neuron units in the third hidden layer is limited to
the interval [2, 20]. As the gray polyline shown in Fig. 5, the
highest accuracy (0.971) is obtained when the third hidden layer
incorporates 10 neuron units. So, the number of neuron units in
this layer is set to 10.

According to the above analysis, the underlying classifier of
the DTOF-ANN model (Fig. 6) is designed as a five-layer structure
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Fig. 5. Accuracy of the neural classifier under different hidden layers.
Fig. 6. The architecture of the neural network classifier of the DTOF-ANN model.
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(One input layer, three hidden layers and one output layer) of
artificial neural network with 56, 28 and 10 neuron units in three
different hidden layers respectively. It can be seen that optimal
vectors of URLs are taken as the input of the classifier. The main
tasks of the forward propagation and the backward propagation
of the classifier are as follows:

(1) Forward propagation. Phishing datasets with the selected op-
imal features are input to the neural network. The input datasets
re generally divided into two parts: the training set and the
esting set. The training set is used to get the optimal structure
f the neural network, while the testing set is used to test the
erformance of the entire phishing website detection model.
Suppose the training set expressed as S = {(X1, y1), (X2, y2),. . . ,

Xn, yn)}, where: Xi∈Rm is the input data point; yi∈Rl is the corre-
ponding detection result of Xi; H is the number of neuron units
n the hidden layers; and the weights and offsets are randomly
enerated. Once the activation function detects the input from the
nput layer, the output matrix of the hidden layer neuron units
an be calculated as follows:

sum =

⎡⎢⎣ f (w1 ∗ X1 + b1) · · · f (wH ∗ X1 + bH)
...

. . .
...

f (w1 ∗ Xn + b1) · · · f (wH ∗ Xn + bH)

⎤⎥⎦ , (9)

here: wj = (wj1, wj2,. . . , wjH )| (j = 1,2,. . . , H) is the randomly
enerated weight vector; bj (j = 1,2,. . . , H) represents the number
f the neuron units in the jth hidden layer; n is the total number
f input data points; f (■) is the activation function defined as
= max(0, x). The output layer of neural network Xi can be

epresented as:

i =

H∑
βjf

(
wj ∗ Xi + bj

)
i = 1, 2, . . . ,m, (10)
j=1
where βj = (βj1, βj2,. . . , βjl) is the jth weight on connecting the
jth neuron unit of the hidden layer and the neuron units of the
output layer.

(2) Backward propagation. For a given data point (Xk, yk) in
the training set S, suppose the output of the neural network be
ŷk = (ŷk1, ŷ

k
2, . . . , ŷ

k
l ). The following relationship is

ˆ
k
j = f

(
βj − bj

)
. (11)

hen, the mean square error of the data point (Xk, yk) in the neural
etwork can be computed as:

k =
1
2

l∑
j=1

(
ŷkj − ykj

)2
. (12)

ubsequently, the weight of the data point (Xk, yk) is updated as:

wj ← wj +∆wj
∆wj = γ

(
yk − ŷk

)
Xk

, (13)

here γ ∈ (0, 1) is the learning rate.
Accordingly, if the neural network gets the correct prediction

n the data point (Xk, yk), i.e. ŷk = yk, the neural network will not
change.

4. Experimental results

The improved K-medoids is firstly tested to verify the effect
of removing duplicate data points from the original phishing
dataset. Then, the performance of the optimal feature selection
algorithm and the overall performance of DTOF-ANN are tested
subsequently. The performance of DTOF-ANN is compared with
those of several existing phishing detection model. Experiments
here are performed on a computer with Intel i5 CPU (3.4 GHz),
DDR3 RAM (16 GB) and Windows 10 operation system (64 bit).
Meanwhile, experimental programs are written by the Python
programming language.
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Table 1
Detailed description of phishing features of the two datasets.
Features:
Values

Value distributions (Dataset 1) Value distributions (Dataset 2)

−1 0 1 −1 0 1

P L P L P L P L P L P L

f1: {−1, 1} 1926 1867 – – 2972 4290 638 5665 – – 838 7441
f2: {−1, 0, 1} 4079 4881 83 52 736 1224 850 8574 121 348 505 4184
f3: {−1, 1} 626 818 – – 4272 5339 468 4156 – – 1008 8950
f4: {−1, 1} 837 818 – – 4061 5339 551 4893 – – 925 8213
f5: {−1, 1} 562 867 – – 4336 5290 227 2016 – – 1249 11090
f6: {−1, 1} 4692 4898 – – 1645 0 1291 11463 – – 185 1643
f7: {−1, 0, 1} 1836 1527 2252 1370 810 3260 386 3434 295 2619 795 7053
f8: {−1, 0, 1} 3051 506 1146 21 701 5630 862 7654 0 0 794 5452
f9: {−1, 1} 2690 4699 – – 2208 1458 795 7095 – – 681 6011
f10: {−1, 1} 909 1144 – – 3989 5013 378 3356 – – 1098 7950
f11: {−1, 1} 734 768 – – 4164 5389 290 2575 – – 1186 10531
f12: {−1, 1} 715 1081 – – 4183 5076 314 2788 – – 1162 10318
f13: {−1, 0, 1} 2675 1820 0 0 2223 4337 736 6535 128 1137 612 5434
f14: {−1, 0, 1} 3246 36 1502 3835 150 2286 847 7521 385 4724 244 861
f15: {−1, 0, 1} 2387 1569 1744 2705 767 1883 688 3419 532 4723 256 4964
f16: {−1, 0, 1} 4238 4202 236 498 397 1457 796 7068 116 1030 564 5008
f17: {−1, 1} 931 1083 – – 3967 5074 265 2353 – – 1211 10753
f18: {−1, 1} 604 1025 – – 4294 5132 433 3845 – – 1043 9621
f19: {−1, 0, 1} 0 0 4296 5480 602 677 589 5230 716 6356 171 1520
f20: {−1, 0, 1} 657 658 0 0 4241 5499 337 2992 25 988 1114 9126
f21: {−1, 1} 225 251 – – 4673 5906 573 5476 – – 903 7630
f22: {−1, 1} 947 1190 – – 3951 4967 289 2566 – – 1187 10540
f23: {−1, 1} 443 569 – – 4455 5588 418 3712 – – 1058 9394
f24: {−1, 1} 2632 2557 – – 2266 3600 798 7006 – – 678 6100
f25: {−1, 1} 1718 1725 – – 3180 4432 469 4164 – – 1007 8942
f26: {−1, 0, 1} 1673 982 1718 851 1507 4324 587 5212 245 1095 644 6799
f27: {−1, 1} 3885 4316 – – 1013 1841 843 7485 – – 633 5621
f28: {−1, 1} 927 621 – – 3971 5545 652 5789 – – 824 7317
f29: {−1, 0, 1} 193 355 2929 3227 1776 2575 265 2353 476 4226 735 6527
f30: {−1, 1} 839 711 – – 4059 5446 772 6855 – – 704 6251
b
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4.1. Description of the phishing dataset

At present, the performances of many existing phishing de-
ection models are verified by their own designed or collected
atasets (such as the tools listed in Table 8). However, many
elf-defined features may invalid for newly emerged phishing
ebsites due to short life cycles and fast update speed of phishing
ebsites. For fairness, two public phishing datasets (described in
able 1), marked by Dataset 1 and Dataset 2, are used to test the
erformance of DTOF-ANN.
Dataset 1 is downloaded from the UCI library collected by

ohammad, Thabtah and McCluskey [34]. This dataset has mul-
iple sources, including PhishTank, MillerSmiles, Google, Yahoo
nd Starting Point catalogue. It is composed of 11055 data points
ith 4898 (44.31%) legal websites and 6157 (55.69%) phishing
ebsites. 70% of the data points in this dataset are used for
raining while the remainder 30% points are used for testing [30].
ataset 2 are crawled from the PhishTank [35] and Alexa [36]
ecords during the period of December 2017 to June 2018. Since
any real data (such as graphics, files and videos) are contained

n the original crawled datasets, URLs with the file type suffixes
.jpg, .zip, .mp4, and so on) are deleted. Dataset 2 is constructed
fter refinement, which is composed of 14582 data points with
476 (10.12%) phishing points.
Dataset 1 is used to test performance of DTOF-ANN from

everal aspects, including the performances of the improved K-
edoids algorithm, different features on the phishing detection,
nd the optimal feature selection algorithm. Dataset 2 is used to
est the performance of the entire DTOF-ANN model.

Table 1 lists the details of phishing features of the two datasets.
he meaning of f1∼f30 are introduced in Section 3.2.1 of this
aper. The value of each feature can be −1, 0 or 1. The distri-
ution of the feature value is also provided. For example, for f2in
ataset 1, there are 4079 phishing websites (marked by ‘‘P ’’) and
881 legal websites (marked by ‘‘L’’) when f is −1; there are 83
2
phishing websites and 52 legal websites when f2 is 0; and there
are 736 phishing websites and 1224 legal websites when f2 is 1.

As can be seen from this table, for some features, the distri-
utions of data points vary significantly for different values. For
xample, f21 of Dataset 1 can be−1 or 1 with only 476 (225+251)
ata points being −1 and 10579 (4673+5906) data points being
. Compared with the number of data points valued 1, the number
f data points valued−1 is negligible. Therefore, we can conclude
hat this feature has little effect on the final classification results.
his table also shows that a single feature cannot completely
istinguish legal websites and phishing websites.

.2. Metrics for the performance evaluation

The confusion matrix is used to evaluate the performance of
TOF-ANN as usual. The actual values and the prediction values
an be compared with the confusion matrix which is defined as
able 2, considering that the phishing detection in this paper
an be represented as a 2-way problem (the phishing websites
nd the legal websites). Here, the phishing websites are taken as
ositive samples with the legal websites as negative ones.
Metrics Precision, Recall, F1_score and Accuracy can be defined

or comprehensively evaluating the performance of DT-NN with
he TP, TN, FP and FN shown in Table 2. Precision Eq. (14) is
defined as the number correctly detected phishing websites (TP)
divided by the number of all detected phishing websites (TP+FP).

Precision = TP/(TP + FP). (14)

Recall Eq. (15) is defined as the number of correctly detected
hishing websites (TP) divided by the number of all phishing
ebsites (TP+FN).

ecall = TP/(TP + FN). (15)
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Table 2
The confusion matrix for evaluation the performance of the phishing detection.
Actual value Predict value

Positive
(Phishing websites)

Negative
(Legal websites)

Positive
(Phishing websites)

TP: The number of phishing websites that are
correctly detected as phishing ones.

FN: The number of phishing websites
that are wrongly detected as legal ones.

Negative
(Legal websites)

FP: The number of legal websites that are
wrongly detected as phishing ones.

TN: The number of legal websites that
are correctly detected as legal ones.
f
r
b
f

Table 3
Performance of the improved K-medoids algorithm on Dataset 1.
Points Precision Recall F1_score Accuracy Time cost (s)

500 0.8989 0.9057 0.8972 0.8900 0.0876
1000 0.9000 0.8911 0.8955 0.8950 0.2274
1500 0.9257 0.9200 0.9217 0.9333 0.2753
2000 0.9466 0.9406 0.9435 0.9427 0.3723
2500 0.9286 0.9286 0.9286 0.9320 0.5087
3000 0.9588 0.9309 0.9446 0.9500 0.4978
3500 0.9371 0.9391 0.9228 0.9300 0.6049
4000 0.9552 0.9537 0.9519 0.9523 1.0178
4500 0.9517 0.9367 0.9441 0.9456 0.8160
5000 0.9403 0.9561 0.9481 0.9500 1.4735
5500 0.9481 0.9431 0.9456 0.9445 0.9939
5780 0.9557 0.9548 0.9571 0.9558 1.4790
All data 0.9563 0.9563 0.9563 0.9561 4.7461

F1_score Eq. (16) is defined as the harmonic average of the
Precision and the Recall, which is a comprehensive metric for
evaluating the performance of a classifier. The value of this metric
is in the interval [0, 1]. The larger value of this metric is, the better
performance of the classifier will be.

F1_score = 2×(Precision×Recall)/(Precision+ Recall). (16)

Accuracy Eq. (17) is defined as the number of all phishing web-
sites (TP+TN) divided by the number of all websites (TP+TN+FP+
FN).

Accuracy = (TP + TN)/(TP + TN + FP + FN). (17)

4.3. Performance of the original phishing dataset refining

The improved K-medoids clustering algorithm can remove
the duplicate data points from the original phishing dataset. It
decreases the complexity of the training procedure of the neural
network classifier, where a refined set of data points similar to
those in phishing detection as the original dataset is acquired.

Table 3 lists the experimental results of the improved K-
medoids algorithm with selected different numbers of points.
The original dataset (Dataset 1) without optimal feature selection
performs this experiment to verify the effectiveness of this algo-
rithm. In this table, each time the subset of data points (without
duplicate data points) is acquired, performance of DTOF-ANN
from five different perspectives are tested.

The improved K-medoids algorithm processes the data points
of the Dataset 1 one after another until all points are processed. It
can be seen that the number of points of the biggest subset of the
Dataset 1 is 5780. When the number of data points reaches 5780,
the improved K-medoids algorithm terminates. This means there
are nearly half of duplicate data points in the original dataset.

The last line of this table gives the performance of DTOF-
ANN when all data points in the original dataset are tested. From
this table, we can see that the refined dataset (with 5780 data
points) has almost the same performance as the original dataset
when metrics of ‘‘Precision’’ ‘‘Recall’’, ‘‘F1_sore’’ and ‘‘Accuracy’’ are
tested. However, it takes much less time cost than the ones of the
original dataset.
Table 4
Performance comparisons between the traditional and the improved K-medoids
algorithm.
Medoids Traditional K-medoids Improved K-medoids

Accuracy Times (s) Accuracy Times (s)

500 0.8801 0.0156 0.9311 0.0156
1000 0.8803 0.0312 0.9350 0.0468
1500 0.8671 0.1092 0.9167 0.1092
2000 0.9125 0.1560 0.9231 0.1404
2500 0.9140 0.1404 0.9442 0.2340
3000 0.9283 0.2028 0.9283 0.2184
3500 0.9112 0.3432 0.9414 0.2562
4000 0.9114 0.3432 0.9231 0.3432
4500 0.9267 0.3900 0.9278 0.4056
5000 0.9152 0.5772 0.9313 0.5616
5500 0.9236 0.6084 0.9373 0.6084
5780 0.9204 0.6864 0.9403 0.6240

Table 4 compares the performance (accuracy and time cost)
between the traditional K-medoids algorithm and the improved
K-medoids algorithm. For fairness and implementation simplicity,
this experiment uses the KNN as the underlying classifier. Specif-
ically, Dataset 1 (without optimal features selection) is firstly
processed by the two algorithms with the same procedures as
ones listed in Table 3. Then, two refined datasets by the tradi-
tional and improved K-medoids algorithms are fed to the KNN
classifier respectively. We can see that the performance of the
improved K-medoids algorithm is better than the performance of
the traditional K-medoids algorithm.

4.4. Effectiveness of the optimal feature selection

This part evaluates the effectiveness of the optimal feature
selection algorithm that combines CART and the local search
methods, where useless and negative features can be deleted. In
this experiment, Dataset 1 tests the proposed algorithm.

The values of the new defined index f_Value for the 30 features
of the Dataset 1 are computed first (Fig. 7). Some features, such
as f8, f14 and f26, have much higher f_Values than the other fea-
tures. However, there are also some features have much smaller
f_Values. Features with small f_Values may have small or even
negative impacts on the performance of the underlying classifier
and, therefore, they are deleted them from the original features
set. Apparently, if f_Value of a feature is 0, this feature is taken as
a useless feature. ρin Eq. (8) is the index for finding the negative
features having relatively small f_Values. Consequently, negative
feature can be deleted by combining f_Value and ρ.

Fig. 8 shows the accuracy of the classifier which uses the single
eature to detect the phishing websites for the Dataset 1 (without
efining data points). Figs. 7 and 8 show that features with f_Value
igger than 0.1 also have higher accuracy than the ones with
_Value smaller than 0.1. For example, the biggest f_Value of f8
has the highest detection accuracy and thus f8 has the positive
impact on the phishing detection.

Figs. 7 and 8 also show that the detection accuracy of some
features is the same when their f_Value are less than 0.1. That

is, when f_Value is less than 0.1, the features with higher f_Value
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Fig. 7. f_Value values of different features of the Dataset 1.
Fig. 8. The accuracy of the classifier based on each single feature.
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xhibit smaller detection accuracy than the ones with smaller
_Value. Therefore, we can conclude that the features with high
_Values have negative impacts on the phishing websites de-
ection. For example, when the feature set {f8, f14, f15, f7, f26,
6, f29, f13, f9, f16} are used to by the classifier, the detection
ccuracy is 93.89%. However, when f27 (f_Value(f27) = 0.0539) is
ncluded in this set, the detection accuracy is decreased to 93.71%.
herefore, f27 has the negative impact on the detection accuracy.
he negative features are the ones to be deleted from the original
eatures set for the high detection accuracy.

For the algorithm of optimal feature selection, ten features
ith the highest f_Values are selected as the initial feature set.
s shown in Fig. 8, the feature set {f8, f14, f15, f7, f26, f6, f29, f13, f9,

16} corresponding to the yellow bars are selected as the initial
eatures for the tested dataset. Then, the remainder features with
ositive impacts are sequentially added to this set based on their
_Values. Specifically, if the detection accuracy is increased, the
orresponding positive feature is put to the selected feature set.
his process is continued until the detection accuracy barely
ncreased or does not grow any more. This method can prune out
he small impact and useless features from the original feature
et.
Table 5 gives the detection accuracy (without refining data

oints) when different positive impact features are added to the
nitial feature set. As discussed above, since f27 (although it has
he highest f_Value among the remaining features) has the nega-
ive impact on the detection accuracy, this feature is not included
n the optimal feature set. However, f24 (it has the second highest
_Value among the remaining features) is put into the optimal
eature set, as shown in the second line of Table 5, because it has
ositive impact on the detection accuracy.
Table 5 shows that the optimal feature set of the tested dataset

s F 14 which has less features (24) than the original ones (30).
eanwhile, it gets higher detection accuracy (95.76%) than the

nes of the initial feature set (93.89%). The last line of Table t
gives the detection accuracy with all features of the tested
ataset. The detection accuracy (94.02%) of utilizing all features is
maller than that (95.76%) of utilizing the selected optimal feature
et due to negative impact and useless features.
In Table 6, line 2 - line 4 give the experimental results with

different categories of features (as listed in Table 1). Here, the
riginal dataset (Dataset 1) is refined by the improved K-medoids
lgorithm. It can be seen from this table that single category
f features cannot obtain the required detection performance.
herefore, combining all the 4 categories of features is necessary.
ine 5 and line 6 in Table 6 shows that the results with all of
he 30 features and selected optimal feature set (F14in Table 5)
espectively. The accuracy of utilizing optimal feature set is better
han those with all the features. These results further demon-
trate the effectiveness of combining the methods of refining
ataset and selecting optimal features.

.5. Overall performance comparisons among different methods

The performance of DTOF-ANN is also compared with those of
ome classical classifiers and some existing methods.
Table 7 lists the phishing detection results of DTOF-ANN and

ome commonly used classifiers. These classifiers are NB (Naïve
ayes), LR (Logistic Regression), GBDT (Gradient Boosting + Deci-
ion Tree), SVM (Support Vector Machine), ANN (Artificial Neural
etwork), RF (Random Forest) and DT (Decision Tree). For fair-
ess, all the classifiers are used to process the two datasets listed
n Table 1, with the results being the averages of ten repetitive
xperiments on the two datasets. We can see that, due to strong
earning ability and high classification accuracy, the performances
f neural network classifiers (ANN and DTOF-ANN) are better
han the other classifiers. In addition, over-fitting and high com-
utational complexity of the DTOF-ANN are alleviated because

he negative and useless features are pruned by the optimal
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Table 5
Detection accuracy of different feature sets (without data refining).
Feature set names Specific features Accuracy

Initial set f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 0.9389
F1 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 0.9421
F2 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 0.9428
F3 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 0.9448
F4 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 0.9462
F5 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 0.9471
F6 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 0.9479
F7 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 0.9493
F8 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 0.9516
F9 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 , f22 0.9534
F10 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 , f22 , f17 0.9538
F11 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 , f22 , f17 , f11 0.9557
F12 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 , f22 , f17 , f11 , f2 0.9566
F13 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 , f22 , f17 , f11 , f2 , f20 0.9570
F14 f8 , f14 , f15 , f7 , f26 , f6 , f29 , f9 , f16 , f13 , f24 , f5 , f12 , f18 , f3 , f21 , f1 , f23 , f22 , f17 , f11 , f2 , f20 , f10 0.9576
All features f1 . . . . . . f30 0.9402
Table 6
Performance of different feature sets (after data refining).
Feature sets Precision Recall F1_score Accuracy

Address Features (f1–f12) 0.8918 0.8751 0.8834 0.9037
Abnormal Features (f13–f18) 0.8874 0.8117 0.8479 0.8734
HTML and JavaScript Features (f19– f23) 0.7742 0.0499 0.0938 0.5087
Domain Features (f24–f30) 0.7099 0.7180 0.7139 0.7499
All features (f1–f30) 0.9563 0.9563 0.9563 0.9561
Optimal Feature Set (F14 in Table 5) 0.9776 0.9736 0.9761 0.9780
Table 7
Performance comparisons between DTOF-ANN and some classical classifiers.
Classifiers Precision Recall F1_score Accuracy

NB 0.5189 0.9979 0.6828 0.5970
LR 0.9313 0.9022 0.9165 0.9285
GBDT 0.9573 0.9324 0.9447 0.9525
SVM 0.9601 0.9261 0.9420 0.9512
ANN 0.9653 0.9563 0.9563 0.9661
RF 0.9688 0.9620 0.9654 0.9688
DT 0.9460 0.9640 0.9549 0.9588
DTOF-ANN 0.9776 0.9736 0.9761 0.9780

Table 8
Performance comparisons between DTOF-ANN and some existing methods.
Models Datasets Precision Recall F1_score Accuracy

Legal Phishing

Ma 15000 20500 0.9980 0.9240 0.9510 0.9550
Cantina 2100 19 0.2120 0.8920 0.3420 0.9690
Zhang 100 100 0.9100 0.9792 0.9150 0.9150
Off-the-Hook 20000 2000 0.9750 0.9510 0.9630 0.9990
Cantina+ 1868 940 0.9640 0.9640 0.9640 0.9550
DTOF-ANN 18004 7633 0.9776 0.9736 0.9761 0.9780

feature selection. Consequently, Accuracy of DTOF-ANN is better
than the traditional ANN classifiers.

Table 8 lists the experimental results of DTOF-ANN and some
existing models on detecting phishing attacks. For the generality
of comparisons, four kinds of phishing detection methods are
selected in this experiment, including the phishing detection
system proposed by Ma [7] (abbreviated as ‘‘Ma’’ in this table)
based on the blacklist; the Cantina [12] based on the heuristic
method; the tool proposed by Zhang [22] (abbreviated as ‘‘Zhang ’’
in this table) based on the visual similarity method; the Off-
the-Hook [19] and Cantina+ [37] based on the machine learning
method.

The tested dataset used by ‘‘Ma’’ is collected from the ‘‘DMOI
Open Directory Project’’, the ‘‘Yahoo directory’’ the ‘‘PhishTank’’
and the ‘‘Spamscatter’’. The source dataset of the Cantina is

constructed based on the ‘‘Alexa’’ and the ‘‘PhishTank’’. The tested
Table 9
Performance comparisons among different machine learning phishing detection
models.
Models Precision Recall F1_score Accuracy

BN&SVM 0.8817 0.9265 0.90035 0.9178
K-medoids&PNN 0.9666 0.9626 0.9203 0.9607
Hybrid Model 0.9547 0.9617 0.9585 0.9623
FACA 1.0000 0.7022 0.8251 0.8694
K-means&SVM 0.9441 0.5693 0.7102 0.9432
DTOF-ANN 0.9776 0.9736 0.9761 0.9780

dataset used by ‘‘Zhang ’’ is selected from the ‘‘PhishTank’’. The
tested dataset of the Off-the-Hook tool is selected from the
‘‘PhishTank’’ and the ‘‘Intel Security’’. The test dataset of the
Cantina+ is built on the ‘‘Alexa’’ and the ‘‘3Sharp’’.

The tested datasets of DTOF-ANN are composed of Dataset 1
and Dataset 2 (Table 1). As can be seen, the performance of the
DTOF-ANN is superior to the others except for Accuracy of the off-
the-Hook which collects more than 200 phishing features. More
features contribute to high accuracy of this tool. However, it will
also bring extra complex computation.

Table 8 gives the performances of these tools are evaluated
by different datasets. For fairness, the performance of DTOF-
ANN is also compared with five other machine learning phishing
detection models. Table 9 lists the experimental results, where
two datasets listed in Table 1 are used to test these models. The
performances of different models are averages of ten repetitive
experiments.

In these models, the BN&SVM [11] is based on both the
Naive Bayesian and the Support Vector Machine classifiers; the
K-medoids&PNN [16] is based on both the K-medoids clustering
and probabilistic neural networks; the Hybrid Model [38] is built
based on several machine learning classifiers such as the Bayes
Net, Naïve Bayes, Random Forest, SVM and so on; FACA [13] is
built on the associative classification (AC) which is an effective
supervised learning approach targeting to predict unseen in-
stances; and the K-means&SVM [39] is built on both the K-means

clustering and SVM.
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We can see from Table 9 that Precision of the FACA is best
among all the tested models. However, Recall, the F1_score and
ccuracy of this model is worse than most of the tested models.
o, this model is unstable in detecting phishing attacks. As the
ad Recall and F1_score, the K-means&SVMmodel is also unstable.
n general, the performance of DTOF-ANN is better than other
odels.

. Conclusion and future work

This paper proposes DTOF-ANN, a neural network phishing
etection model based on decision tree and optimal feature selec-
ion. In this model, the traditional K-medoids clustering algorithm
s firstly improved to refine the public phishing datasets. Then,
new index, f_Value, based on the Gini coefficient, is defined

o evaluate the impact of different features on the performance
f phishing detection. The optimal feature selection algorithm
ased on f_Value, which integrates the decision tree and lo-
al search method, is designed to construct the optimal feature
ector for the underlying neural network classifier. Finally, the
ptimal structure of the neural network that suits to process the
roblem of phishing detection is constructed through the iter-
tive parameter adjustment. As the continuously change of the
hishing attacks, effective methods of optimal feature selection
re urgently needed, which will be our future work.
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