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Figure 1: Example of shadow detections with the SBU dataset [34]. The top and bottom scenes can lead to fake shadow (the
dark parts of the pillar) and foreground (the human shadow) respectively.

ABSTRACT

Effective contexts for separating shadows from non-shadow objects
can appear in different scales due to different object sizes. This paper
introduces a new module, Effective-Context Augmentation (ECA),
to utilize these contexts for robust shadow detection with deep
structures. Taking regular deep features as global references, ECA
enhances the discriminative features from the parallelly computed
fine-scale features and, therefore, obtains robust features embed-
ded with effective object contexts by boosting them. We further
propose a novel encoder-decoder style of shadow detection method
where ECA acts as the main building block of the encoder to extract
strong feature representations and the guidance to the classifica-
tion process of the decoder. Moreover, the networks are optimized
with only one loss, which is easy to train and does not have the
instability caused by extra losses superimposed on the intermediate
features among existing popular studies. Experimental results show
that the proposed method can effectively eliminate fake detections.
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Especially, our method outperforms state-of-the-arts methods and
improves over 13.97% and 34.67% on the challenging SBU and UCF
datasets respectively in balance error rate.
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1 INTRODUCTION

Shadow is the light effect due to surface occlusion, which exists
almost everywhere in our daily lives. It can be hard or soft, depend-
ing on the number of light sources. Accurately detecting shadows is
important for computing illumination [20, 26], layout [17], camera
calibration [16], object tracking [23], etc.

Recently, deep learning based approaches demonstrate better
performances [12, 18, 24, 34] than traditional physical [3, 5] or
handcrafted methods [33, 41, 46]. They can train optimally deep
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classifiers supported by big sample data. Various methods have
been proposed based on convolutional neural networks (CNN)
by direct application [9, 18, 22, 28, 34], extending with more con-
texts [12, 36, 46] or adversarial learning with generative adversarial
networks (GAN) [6] for small data training [21, 25] or higher dis-
crimination [35]. Some researchers [1, 11, 12, 36, 44, 46] prefer to
more constraints through additional loss functions from layers or
networks.

However, current methods may still suffer from two difficulties
(Figure 1): 1) Dark surfaces similar to the normal shadows and
2) light shaded shadows similar to the backgrounds. The former
can lead to fake shadows which should be real surfaces, while the
latter can lead to fake backgrounds which should be shadows. We
can conclude that the shadow detection cannot be stable without
correcting these fakes.

Humans can easily recognize shadows. How can we do that?
Our common sense shows that the surroundings or contexts of
objects of interest provide important cues for judgment. Looking
at the scenes shown in Figure 1, we not only just check the shadow
or foreground surface themselves independently, but also their
surroundings to validate their shadow properties. For example, the
dark surface won’t be taken as shadow because it is on a pillar
standing on the floor. Therefore, we can conclude that appropriate
surroundings or contexts are important for recognition.

Existing deep neural network based studies do not emphasize
the importance of appropriate contexts pertaining to varying-sized
objects, even though they have already tried to capture rich con-
texts. When coming to shadow detection, they either overlook the
importance of those appropriate ones or eliminate them during
the convolution processes. Therefore, it is necessary to figure out
a novel method to explore object related scales effectively so that
right contexts can be utilized for shadow localization.

To this end, we propose a new module, Effective-Context Aug-
mentation (ECA), which adopts multiple parallel convolutions with
different kernels to augment effective object contexts in proper
scales for shadow detection. Taking the regular deep features as
the global guidance and fusing them with the discriminative fea-
tures from the fine scales by the convolutions, ECA can boost the
effective object contexts embedded in the final output feature and
thus help the object detection process.

The robust object contexts enhanced by ECA features can also
assist the generation process from the strong representation for
a robust segmentation, i.e., ECA features can act as strong cues
to separate the shadow and non-shadow regions. Consequently,
we propose an encoder-decoder based neural network method to
fully explore the merits of ECA. It adopts ECA in the encoder to
obtain discriminative contexts for the image representation and
also takes the ECA features to guide the decoding process for an
efficient classification. Our method can integrate more effective
scales for shadow contexts than the existing networks and thus
eliminate fakes significantly. Unlike state-of-the-arts studies [1, 11,
44, 46], it does not take additional constraints from the intermediate
features. Such a one-loss design is easy to train. In addition, this
design reduces the possible affections incurred by the inaccurate
intermediate features and thus improves stability.

At last, note that the parallel design with multiple convolutions
adopted by ECA are also appeared in the Inception module [30] and

its variants [2, 15, 29, 31]. However, there are significant differences
between ECA and these modules. They aims at discover redundant
scales by sparse structures, so they stack those convolution and
pooling operations repeatedly for more scales. Their direct con-
catenation of the convolved features cannot augment the object
detection related effective contexts. ECA, on the other hand, aims
at discovering the discriminative object contexts. Therefore, it only
computes those convolutions once to initialize fine scales but, in-
stead, further pool the convolved features for better discriminative
features and fuse them with the global backbone deep features to
boost the effective object contexts.

In summary, our contributions are mainly twofold. On one hand,
an efficient context discovery module, ECA, is proposed. It takes
different convolutions simultaneously to obtain initial features in
fine scales and then enhances their discriminative features with the
regular backbone features as global references. Output features with
the boosted effective contexts for object detection can be obtained.
On the other hand, an end-to-end deep framework is introduced. It
follows the encoder-decoder idea to fulfill an easy-training shadow
detection without fakes, where ECA is adopted into both parts to
obtain an robust feature abstraction and classifier with effective
shadow contexts. Designed with one-loss, it is easy to train without
the distraction of the inaccurate intermediate features. Experiment
results demonstrate the state-of-the-arts shadow detection perfor-
mance, where our method outperforms existing ones with over
13.97% and 34.67% decreases on the challenging SBU and UCF [45]
datasets in balance error rate (BER) [32] respectively.

In the following, after introducing related studies (Section 2), the
details of our method (Section 3), including ECA, will be discussed.
The experimental results are presented in Section 4 with the whole
paper concluded at last in Section 5.

2 RELATED WORK

Related studies can be classified as traditional or deep methods
according to whether they adopt the deep network based ideas.

Among the traditional methods, the early models mainly builds
on the physical models using illumination-invariant priors [3-5].
Later on, handcreafted features are adopted based on the informa-
tion from edge [13], color [3], texture [45], etc. Perhaps the represen-
tative methods are those based on region classification [7, 8, 33, 41].
These methods need specifically designed artificial features which
are often not discriminative enough and thus difficult to apply in
practice.

Deep learning based methods are popular in recent years, thanks
to their high performances from the deep feature extraction. CNN
can extract the effective multi-scale features for robust shadow
detections [18, 22, 28, 34]. For example, Vicente et al. [34] adopted
a patch-based CNN with image-level prior and image patches to
detect shadows. Some of them [18, 28] do not take the end-to-end
design. Those CNN based framework may not capture rich shadow
characteristics.

Some authors [12, 36, 46] extended CNN by exploring more
contextual cues. For example, Zhu [46] proposed the bidirectional
pyramid network which combines the deeply global and shallowly
local information together to obtain rich contextual features; Wang
et al. [36] obtained global and local information by stacked multiple



parallel fusion branches. Our methods adopts ECA to find effective
contexts through in-layer local convolutions and global references
from the backbone networks.

Some authors [21, 25, 35] utilized generative adversarial net-
works (GAN) [6] to work around the limited training data [21, 25]
or improve the discrimination power [35]. For example, Le et al.
adopted two U-Nets [27] based GAN with the illumination priors
to augment the dataset for more samples. More complicated ad-
versarial model is proposed by Chen et al. [1], where a multi-task
model learns shadow edge detection, shadow region detection, and
shadow count detection simultaneously and the adversarial training
is applied to the student-teacher networks.

Another idea is proposed by Zheng et al. [44] who took fake
detection regions as the distraction areas and fused several existing
results with ground truths to obtain labels for robust discrimina-
tion. This method requires to compute new ground truths for the
distraction regions with several existing models.

Recently, Wang et al. [38] introduced an interesting work for de-
tecting the shadow associated foreground instance. They presented
a new dataset and an evaluation metric. However their focus is
on the overall instance but not the shadow itself. Similar instance
oriented work is also proposed by Wang et al. [37]. Inoue and Ya-
masaki [14] proposed a novel large-scale synthetic shadow/shadow-
free/matte image triplets dataset and demonstrated improved per-
formance on it.

Existing deep learning based shadow detection methods use the
regular features from the layer-by-layer convolution, which can be
unstable, considering the vast scale losses during the convolution.
Some of them [1, 36, 44, 46] even rely on several constraints by
computing more loss functions and thus may require additional
computational resources due to inaccurate intermediate features.
Hu et al. [11] additionally introduced the detail enhancement mod-
ule (DEM) for complex shadows. Our model, however, includes
ECA to boost discriminative multi-scale features by referring to the
global regular features from the backbone networks. Therefore, it
can augment effective contexts for object detection in comparison
with the existing methods. In addition, our model only uses one
loss and thus is easy to train with less computational load and also
improves the stability.

The parallel design with multiple convolutions adopted by ECA
have previously considered by the Inception module [30] and its
several variants [2, 15, 29, 31]. They targeted at redundant scales
in sparse structures and thus stacked those convolution and pool-
ing operations repeatedly with direct concatenation for the output.
This structure cannot discovery effective context for object dis-
crimination which is exactly the target of ECA. Therefore, ECA
only need compute the convolutions once, but additionally pools
the convolved fine features for discriminative scales and further
fuses them with the global deep features to boost effective object
contexts.

3 OUR PROPOSED METHOD

The new method aims at discovering effective object contexts for
a robust shadow detection. In the literature, contexts in different
scales have already been considered where regular layer-by-layer
convolution can provide layer-wise abstraction. However, this type

of convolution does not weight the effective scales for the varying-
sized objects, i.e., those scales can be either overlooked as normal
ones or even lost after the long deep learning process. As shown in
Row A of Figure 2, the shadow feature of the normal object O; can
always be found during the convolution process and thus it can be
segmented successfully as shown on the right of this row. However,
the dark surface of O, can always be taken as shadow during the
abstraction process because its shadow context may not be properly
considered in the intermediate layers. Similar observation can also
be seen for the light shaded S3 whose shadow feature gradually
disappears without proper reception fields. The regular multi-scale
features from the layer-by-layer convolution is not enough for
a robust detection and effective object contexts are necessary as
important cues for a robust detection.

Input image
O;

- SB
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Figure 2: The principle of incorporating effective contexts.
Object O; is the normal object with a shadow S;; Object
0Oy whose shadow is Sy has a dark lower surface similar to
shadow; Shadow S3 is light shaded. Row A shows the general
detection process in existing studies while Row B illustrates
the detection process with effective contexts incorporated.

But how to obtain the effective contexts for shadow detection?
It is observed that the human takes the surrounding distributions
as references to judge where the dark areas are objects or shadows.
For our deep network, regular deep features encode such global
distributions and thus can be taken to weight the importance of
different object features. And consequently, a new module, ECA, is
proposed, which takes the regular deep features as global cues to
boost the effect objects contexts.

In particular, ECA convolves the input feature with several dif-
ferent scales in parallel for features with fine contexts and then
fuses their discriminative features as representatives with the reg-
ular deep features so that the significant contextual information
can be globally augmented. Through incorporating ECA in each
layer of the deep structure, more effective contexts can be gradually
obtained in the subsequent layers of wider reception fields.

As demonstrated in Row B of Figure 2, the novel layer-wise
features can dig discriminative contexts through the layer-by-layer
convolution and, then, the dark surface of O is gradually filtered
out, while the light shaded S3 are kept salient. Such strong features
can ensure the success of the final detection as shown on the right
side of Row B.

Discriminative contexts can also guide the final classification.
Therefore, an encoder-decoder based framework is proposed so
that the appropriate scales are integrated into the decoding process
at multiple levels.



3.1 The general pipeline

The proposed framework takes the U-Net [27] like encoder-decoder
structure (Figure 3). The global contexts for the correspondingly
discriminative contexts are generated with the regular features
from ResNet-101 [40] in four scales.

Accordingly, the propose method works as follows to obtain
an end-to-end shadow detection for an input image. First the en-
coder part processes through layer-by-layer coding to obtain its
condensed representation. Then the decoder is applied to map the
representation scale by scale to generate its final shadow distribu-
tion. In each layer of the encoder, ECA discovers discriminative
contexts through multi-scale convolutions, feature pooling and fi-
nal fusion with the regular deep feature in corresponding scale as
ECA feature of this layer. This feature is then input to the next
ECA for the next layer to continue the abstraction process for dis-
criminative contexts. When decoding, the ECA feature is also fused
again with the feature map of the same convolution layer so that
effective-contexts guided generation can be obtained in the decoder.
At last, a 1 X 1 convolution layer is applied and thresholded by
Sigmoid to obtain the final prediction.

We now discuss the details of ECA.

3.2 ECA

ECA consists of two main parts: Fine-scale-feature preparation
and effective-context boosting. The first step aims at collecting
features in fine scales so that richer contexts can be discovered,
while the second step can enhance the effective contexts with the
discriminative features by the global reference of the regular deep
features. The output of ECA is then a feature with robust contexts
for object detection.

First comes the fine-scale-feature preparation in ECA. It con-
volves the input feature with 1 X 1, 3 X 3 and 5 X 5 convolutions
simultaneously. Consequently, there will be triple of the original
channels and, therefore, a preliminary fusion is then required to
reduce parameters and avoid overfitting for capturing important
information. Here, a 3 X 3 convolution is applied to them. Assume
the convolution operation f(’lrj 0) (V) for the input feature V by the

mth P x Q kernel, wE’I‘,) 0)’ 3
f(';,Q) (V) = ReLU(wz’}J,Q) ®V+ b?},)Q))), 1)
where b?;) 0) is the bias for the mth kernel and ReLU is the rectified

linear activation function. The preliminary feature F;, from the

preliminary fusion can be formulated as

where C denotes the concatenation.

Then, the effective-context boosting is applied. Here the pre-
liminary feature is first max pooled to obtain more discriminative
features in different scales for further augmentation of effective
contexts. Then the regular deep feature from the corresponding
layer is input and fused with pooled features for more discrimina-
tive scales on the current layer. Such a concatenated feature may
contain noise after many convolutions and fusions and, therefore,
it is refined again by a 3 X 3 filter kernel as the ECA feature. This
refinement also reduce the feature dimension and avoid overfitting.
Assume the regular feature being FJg;. The ECA feature Fg. , (V)

for V computed by these operations can be formulated as
FREA(V) = [ (COP(ERo (V). ElLy)), 3

where # is the 2 X 2 maxpooling.

This ECA feature is then input to the next ECA for further ab-
straction with next regular scales, so that robust contexts in different
scales can be encoded at last.

On decoding, the ECA feature can act as guidance to the inference
process for a robust classifier. Here the skip connection similar to
U-Net is applied. Details on our connection method is explained in
the experimental part (Section 4).

3.3 Training and testing

The proposed method is implemented with Pytorch. ResNet-101 is
pre-trained by ImageNet to supply the regular features.

3.3.1 Loss design. Intermediate features are sometimes inaccurate
and, therefore, taking them as loss constraints may degrade the
performance. In addition, those intermediate losses may compli-
cate the convergence process. Therefore, to simplify the training
process and reduce the effect of intermediate features, we prefer
to computing the loss once with the final output. In particular, we
adopt the idea of binary cross-entropy and take a weighted cross-
entropy to balance the contributions from positive and negative
samples. It will incur heavy computational burdens if computing
the weights in each batch. Therefore, these weights are computed
from the samples in advance. This function can be formally written
as

L==) (g% logy!™ + (1 - ) (1 -/ log (1 - y¥")), (4)

where: yf "¢ and yf“b represent the model prediction and the ground
truth of the shadow class of the i-th pixel, respectively; and A is the
weight which is set to 0.7 by our experiments.

3.3.2  Training and testing parameters. Training is done with a
single GeForce GTX 1080 Ti. SBU, ISTD [35] and CUHK [11] datasets
are taken as the training sets. All samples are resized as 256 X 256.
Adamax is taken as the optimizer and the learning rate is set to
0.0005.

Testing takes the same resize process as training. The results are
then upsampled by bilinear interpolation to restore their original
resolutions as final detection results. Note that we don’t postprocess
the results by CRF [19] as some other methods do [1, 12, 44, 46].

4 EXPERIMENTAL RESULTS

Our main experimental comparisons are undertaken with SBU, UCF,
ISTD and CUHK datasets. The numbers of training images are 4089,
1330 and 7350 while the numbers of testing images are 638, 540 and
2100 for SUB, ISTD and CUHK respectively. UCF contains only 221
images and, therefore, is used for testing.

The performance of ECA is experimented with different config-
urations. Popular methods, such as modules with stacked parallel
convolutions (Inception-v4 [29] and Xception [2]) and deep feature
oriented structures (ResNet-101 [40]) are also taken for performance
comparison. These methods are for rich contexts, while ECA aims
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Figure 3: The architecture of the propose method. It fulfills an end-to-end shadow detection in the encoder-decoder style,
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Figure 4: The structure of ECA.

at effective object contexts. Note that in our experiments the exper-
iments on Inception-v4 and Xception are fulfilled by replacing ECA
in our method with them directly.

Several state-of-the-art shadow detection methods are taken
for the performance comparison, including FSDNet [11], MTMT-
Net [1], DSDNet [44], BDRAR [46], DC-DSPF [39], ADNet [21],
DSC [12], ST-CGAN [35], scGAN [25] , stacked-CNN [34] and
patched-CNN [9]. Three saliency detection models, i.e., SRM [36],
Amulet [42] and EGNet [43] are also included. For fair comparison,
we take the quantitative results from the authors directly. However,
for the qualitative results, not all methods provide the complete
testing results for all data. Therefore, we simply copy their results
directly if they provided. Among the left methods, we implement
ADNet for visual comparisons because there is no open code for it;
and we also train ST-CGAN with the provided codes for testing.

4.1 Qualitative Results

We first show the context enhancement performance of ECA with
extracted 16 X 16 and 32 X 32 features (Figure 5). Here, two types
of features from ECA, ECA-before fusion and ECA-after fusion are
adopted to show its incremental efficacy. The former represents
the discriminative features pooled from the multi-scale features

with the latter for the final ECA output. The discriminative fea-
tures from ECA can apparently capture the shadow areas more
significantly than Inception-v4, Xception and ResNet-101, while
the shadow responses in the final ECA features are generally most
strong and apparent among all corresponding features, thanks to
the discriminative-context augmentation from ECA. The features
of Inception-v4, Xception and ResNet-101 are full of rich contexts
but not sensitive to the shadow, which are also in line with their
rich scale discovery initiatives.

Figure 6 shows the detection results among existing methods
and ours. Our method is good at the light shaded shadows and
resistant to the dark surfaces and obtains better performances than
other methods. Incorporating ECA as the main building block for
the robust features, our method shows its strong abstraction and
robust generation abilities.

The merits of ECA and our shadow detection method are also
tested with challenging images as shown in Figure 7. They represent
the scenes with a lot of dark surfaces (e.g., Brick), mixed shadows
of different types (e.g., Bottle) and extremely light shaded shadows
in comparison with the backgrounds (e.g., Stage). However, our
method still achieves the best accuracies among all methods.
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Figure 6: Shadow detection results of our method in comparison with existing ones.

4.2 Quantitative Results

The popular metric, BER, is adopted to evaluate the ability in ob-
taining balanced results,

Tp T
BER=1- N

_— 5
2 Tp+Fn TN+FP) ©)

where Tp, Ty, Fjy and Fp are the numbers of true positives, true neg-
atives, false negatives and false positives, respectively. The lower
BER is, the better the performance is. Note that Tp + Fy and Ty + Fp
represent the numbers of shadow and non-shadow pixels respec-
tively.

Table 1 shows the statistical comparison results. Our method is
good at all datasets. Especially, for SBU and UCF respectively, it
obtains 13.97% and 34.67% lower in BER than the state-of-the-arts
method, MTMT-Net.

4.3 Cross comparison

The generalization ability is also tested. For fair comparison, our
method is compared with ST-CGAN, scGAN and stacked-CNN
whose results are provided by the authors of ST-CGAN. The test
is performed in the same way as them, where testing images from
three datasets (SBU, ISTD and UCF) are evaluated with the model



E_'

I! F_

- - ‘ I E

Bottle

Stage M r

a) Image

(d) MTMT-Net [1]

——

(e) DSDNet [44]  (f) BDRAR [46] (9) ADNet[21]  (h) ST-CGAN [35]

Figure 7: More detection results among existing methods and ours for challenging images.

Table 1: Quantitative comparisons among state-of-the-arts
methods and ours in BER.

| | SBU [ ISTD | UCF | CUHK |

| Ourmethod [ 271 [ 157 [ 483 | 8.05 |
FSDNet [11] - - - 8.65
MTMT-Net [1] [ 3.15 [ 1.72 [ 7.47 -
DSDNet [44] 345 [ 217 | 759 | 827
BDRAR [46] 3.64 | 269 | 7.81 [ 9.18
DC-DSPF[39] [ 490 [ - [ 7.90 -
ADNet [21] 537 [ 326 | 9.25 [ 12.43
DSC [12] 559 | 3.42 | 10.54 [ 8.65
ST-CGAN [35] | 8.14 | 3.85 [11.23 | -
scGAN [25] 9.10 | 470 [ 1150 [ -
stacked-CNN [34] | 11.00 | 8.6 [13.00 | -
patched-CNN [9] | 11.56 - - -
SRM [36] 651 | 7.92 [ 1251 -
Amulet [42] [ 1513 [ - [1517 [ -
EGNet [43] 449 [ 1.85 | 9.20 -

trained from SBU or ISTD respectively. CUHK is not included be-
cause there are no available results for ST-CGAN, scGAN and
stacked-CNN. Table 2 shows that our model can reach higher gen-
eralization than ST-CGAN, scGAN and stacked-CNN.

Table 2: Cross comparison results between ST-CGAN and our
method in BER.

Training with SBU | Training with ISTD

Testing dataset | SBU [ ISTD | UCF | SBU [ ISTD | UCF

| Ours [ 271 [ 3.79 | 488 [ 537 | 1.57 [ 8.25 |
ST-CGAN [35] 814 | 735 [ 11.23 [ 1134 | 3.85 | 16.18
scGAN [25] 9.10 | 8.98 | 11.50 | 13.26 | 4.70 | 16.41
stacked-CNN [34] | 11.00 | 10.45 | 13.00 | 15.94 | 8.60 | 18.67

4.4 Ablation studies

Several ablated versions of ECA are first taken to evaluate its effec-
tiveness for shadow detection:

o w/o Fl,:
Fpre-
e Skip connection w/ F,

tion starting from F
o Skip connection w/

ECA using 3 X 3 convolution kernel only without

pre: The full ECA but the skip connec-

m .- The full ECA.

Table 3 shows the experimental results in BER, which validates that
the efficacy of ECA feature for efficient shadow detection.

Table 3: Results of the ablation experiment for the effective-
ness of ECA in BER.

SBU | ISTD | UCF | CUHK

w/o Fg},e 421 | 288 | 633 | 10.26
Skip connection w/ F pre 3.99 | 179 | 546 | 9.31
Skip connection w/ Fi., | 2.71 | 1.57 | 4.88 | 8.05

Table 4: Results of the ablation experiment for different fea-
ture abstraction methods in BER.

| | SBU [ ISTD | UCF [ CUHK |
| ECA(Our method) [2.71 [ 1.57 | 4.88 [ 8.05 |

ECA-Simplified 597 | 445 | 7.48 | 9.18
Inception-v4 [2] | 2.91 | 1.69 | 6.99 | 891
Xception [29] 304 | 1.76 | 7.46 | 932
ResNet-101 [40] | 491 | 3.01 | 824 | 9.98
U-Net (baseline) [27] | 7.59 | 3.34 | 10.42 | 12.36

The ablation study with different feature abstraction modules
and methods is also performed (Table 4). Here U-Net [27] is taken as
a baseline, while pure multi-resolution features from ECA modules
without the regular features (ECA-Simplified) are also compared.
ECA achieves the best performances among all methods. This study
shows that our method will not work without the regular features
to provide general object information (e.g., position, silhouettes)
as global guidance to augment object discrimination with effective
contexts after fusing with the fine-scale features from the multiple
convolutions. It also shows that just adopting some pretrained
backbone networks (e.g., ResNet) may not be enough for low-level
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Figure 8: The convergence speeds of different modules on SBU, ISTD and CUHK during training. Note: UCF is not considered

because it is too small to train stably.

tasks. They can obtain the general object features, but be difficult to
discover effective contexts without enough object details. Therefore,
they may not be robust enough for the low-level applications.
Further ablation study on ECA can be explored by the conver-
gence speeds during training (Figure 8). The data from the top three
modulesin previous ablation study (Table 4) are collected for com-
parisons, which are based on the results from the first 40 epochs.
ECA can reach the fastest convergence speeds with the most stable
loss decreasing performance for all datasets among all methods.

4.5 Extension to shadow removal

The proposed end-to-end framework can be also taken as the gen-
eral backbone network. ResNet features act as global guidance
when fusing with the fine-scale discriminative features and thus
help obtaining the effective contexts for robust object abstraction.
Such a strong-discrimination network can be applied to various
applications (such as classification, regression, etc.) for better perfor-
mances. Here we show such an example by extending the propose
framework to shadow removal for the images from ISTD (Figure 9).
In this case, the output layer of our method is convolved back to
have three channels for restoration. The loss is defined as the Lq
loss [10]. Empowered by the strong context-discovery ability of
ECA, our method shows potential applications to various areas.

Image

GT

Ours

Figure 9: Test results on applying our method to shadow
removal.

5 CONCLUSION

Deep network can easily overlook or even discard contexts not in
the specified scales and thus may miss some important cues for
an effective shadow judgment. This paper introduce an effective-
object-context augmentation module, ECA, which can fuse regular
deep features with discriminative features from the simultaneous
multi-scale convolutions and thus boost the appropriate object
contexts for effective object detection. Taking the ECA feature
to the next layer and applying the same ECA feature exploration
iteratively will finally obtain a robust deep feature with strong
object contexts. The ECA feature can also be taken to guide the
generation of shadow distribution. Therefore, a novel end-to-end
shadow detection network is introduced, which integrates ECA into
both encoder and decoder to enhance feature abstraction and guide
the classification. Designed with only one loss, our method is easy
to train without the instability brought by the additional losses with
the inaccurate intermediate features. Experimental results show
our method can eliminate fakes and achieve better performances
than existing methods. They also demonstrate that the proposed
framework can be potentially applied to various areas as a novel
backbone due to the strong discriminative power of ECA.

The proposed method can achieve better detections than other
methods for very complicated scenes with several types of shadows
(e.g., the Bottle in Figure 7) or extremely fake objects (e.g., the Brick
and Stage in Figure 7). But it still has space to improve. The deep
network may generate incorrect predictions and thus bias toward
them. Overcoming this difficulty is our future work.
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