
Vol.:(0123456789)1 3

Multimedia Systems 
https://doi.org/10.1007/s00530-021-00792-8

SPECIAL ISSUE PAPER

Adaptively feature matching via joint transformational‑spatial 
clustering

Linbo Wang1 · Li Tan1 · Xianyong Fang1 · Yanwen Guo2 · Shaohua Wan3 

Received: 25 July 2020 / Accepted: 5 April 2021 
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The transformational and spatial proximities are important cues for identifying inliers from an appearance based match set 
because correct matches generally stay close in input images and share similar local transformations. However, most existing 
approaches only check one type of them or both types consecutively with manually set thresholds, and thus their matching 
accuracy and flexibility in handling large-scale images are limited. In this paper, we present an efficient clustering based 
approach to identify match inliers with both proximities simultaneously. It first projects the putative matches into a joint 
transformational-spatial space, where mismatches tend to scatter all around while correct matches gather together. A mode-
seeking process based on joint kernel density estimation is then proposed to obtain significant clusters in the joint space, 
where each cluster contains matches mapping the same object across images with high accuracy. Moreover, kernel bandwidths 
for measuring match proximities are adaptively set during density estimation, which enhances its applicability for matching 
different images. Experiments on three standard datasets show that the proposed approach delivers superior performance on 
a variety of feature matching tasks, including multi-object matching, duplicate object matching and object retrieval.

Keywords  Clustering · Density estimation · Feature matching · Mode-seeking

1  Introduction

Establishing feature correspondences among images has 
received lots of attention due to its important role in vari-
ous applications such as object recognition, tracking, and 
near-duplicate image retrieval. Despite tremendous previous 
efforts, descriptor based feature matching remains challeng-
ing in identifying inliers from a putative match set formed by 
comparing local feature descriptors [1, 2]. In this paper, we 
aim for pruning wrong matches from the putative match set 
by exploring transformational and spatial proximities among 
match inliers via a joint domain clustering process.

Most existing approaches seek to alleviate mismatches 
by incorporating transformational proximity, which 
assumes correct matches to share similar local transforma-
tions. Among them, geometric voting techniques, such as 
RANSAC [3] and Hough transform [4, 5], are employed 
to find feature matches with inter-image rigid object trans-
formations. Graph-based approaches [6, 7] usually encode 
pair-wise geometric constraints in a graph, aiming to detect 
matches with locally consistent transformations using graph 
optimization. Clustering-based methods [8–11] project the 
putative matches into the transformation space and iden-
tify match clusters with close transformational proximity. 
Deep learning based approaches usually embed the trans-
formational proximity in a deep network for detecting cor-
rect matches [12–17]. Meanwhile, spatial proximity which 
expects correct matches to have close keypoints in each 
image is also explored for wrong match pruning. This is 
typically achieved by distance based neighborhood incon-
sistency measuring [18], keypoint motion smoothness evalu-
ation among nearby matches [19, 20].

The two lines of researches suggest that both proximities 
are helpful cues for rejecting wrong matches, and explor-
ing them together ought to further enhance the matching 
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performance. However, checking the two proximities con-
secutively [21] often fails to reject small groups of matches 
wrongly mapping similarly structured texture patterns. 
Meanwhile, over-segmenting input images and checking 
transformational coherence with regional constraints is 
another beneficial trial [5], but its performance depends on 
the quality of region partition. Therefore, how to combine 
both proximities checking in an effective manner remains 
open for study.

In addition, checking both the proximities generally 
involves manual thresholds, e.g., the threshold of the sym-
metric transfer error (STE) for measuring the transforma-
tional similarity [5, 22] and the minimum neighboring dis-
tance [18, 21] for spatial closeness. This kind of thresholding 
can limit the matching performance since the proximities 
among matches are likely to vary with images.

To this end, we revisit the two proximities of correct 
matches with two observations. Firstly, match inliers are 
often located on the instances of the same object and stay 
close in both input images. Secondly, when mapping the 
same object instances, they typically share similar transfor-
mations in their spatial local neighborhoods. This indicates 
correct matches tend to group together locally and form 
multiple dense distributions in the underlying joint trans-
formational-spatial domain. Meanwhile, wrong matches are 
of random transformations and keypoint locations. They may 
accidentally share either transformational or spatial proximi-
ties but not both with each other or correct matches. There-
fore, they usually scatter all around in the joint domain. This 
is illustrated by the Fig. 1, which plots the transformational 
space (Fig. 1c) of putative matches (Fig. 1b) extracted from 

an image pair (Fig. 1a). Obviously, the space contains 6 
dense local distributions, corresponding to six groups of 
correct matches mapping keypoints gathered on different 
objects, as well as a large number of noisy mismatches. 
Therefore, obtaining reliable matches is then to locate signif-
icant clusters in the underlying spatial-transformation space.

We introduce here an effective clustering scheme to detect 
correspondence groups in the joint domain, a combination 
of the transformational domain formed by the affine trans-
formations estimated from putative matches and the spatial 
domain formed by keypoint locations of matches. The key 
idea is to measure the density of each match point using 
joint kernel density estimation, and determine the cluster 
modes by a density based mode-seeking process, which 
starts from each match point and recursively shifts to its 
local neighbors with maximum density until a stationary 
point (local mode) is reached. Matches subject to the same 
mode are then grouped together, with resultant match set 
recovered from significant clusters. Figure 1d shows the 
clustering result of Fig. 1c using our approach. Six clusters 
are successfully discovered despite their arbitrary shape, and 
corresponding matches are shown in Fig. 1e. Note that the 
mismatches mixed in the clusters of correct matches in the 
transformational space (black points in Fig 1d) do not show 
in the Fig. 1e, which demonstrates the merits of integrating 
both proximities in the matching framework.

The transformational and spatial proximities are checked 
with adaptively set kernel bandwidths during density esti-
mation. The spatial bandwidth is set as the upper bound 
of spatial distance that can keep most match inliers having 
correct match neighbors. Meanwhile, the transformational 

(a) (b)

(c)(d)(e)

Fig. 1   Overview of our approach. Given two images (a), we obtain 
putative matches (b) based on distance of local features, construct 
their transformational domain (projected to 2D plane (c)), per-
form clustering in the joint transformational-spatial domain (d), and 

recover the final matches (e). For the clarity, we only show 300 pairs 
of putative matches in (b), and maximally 100 pairs of matches for 
each cluster in (e)
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bandwidth is adaptively tuned to minimize the density 
entropy, which helps to obtain coherently varying local 
density distribution for the joint domain and facilitates the 
mode-seeking process. The resultant bandwidths are more 
effective for matching different images comparing with man-
ually thresholding, where a large or small bandwidth leads to 
expansive or shrinkage matching object profiles.

To summarize, our approach has following advantages.

•	 We propose to identify correct matches with spatial and 
transformational proximities via density based clustering 
in the joint domain, which better explores both proximi-
ties for feature matching than existing approaches.

•	 We propose an adaptively tuning strategy for setting the 
spatial and transformational bandwidths, so that the clus-
tering performance can be better guaranteed for different 
images.

•	 Extensive experiments and comparisons show that the 
proposed approach can effectively handle various match-
ing tasks, including multiple object matching in single or 
multiple images, and duplicate image retrieval.

2 � Related work

2.1 � Descriptor based feature matching

The keypoint matching by quantizing the appearance of local 
regions with discriminative descriptors is a widely studied 
topic. Notable progress has been achieved by various feature 
descriptors proposed to date, ranging from the classical tech-
niques in [1, 23], to more recently CNN-based ones in [2, 12, 
24]. While they largely form the basis of modern techniques 
of object matching and extended applications [25–31], it is 
generally believed that the feature correspondences estab-
lished by descriptors alone can be enhanced via mutual geo-
metric consistency checking.

2.2 � Transformational proximity based feature 
matching

This line of work identifies match inliers by assuming they 
share similar local transformations. They can be categorized 
into voting based, graph matching based, clustering and deep 
learning based approaches. Voting based methods continu-
ously hypothesizes a global transformation and select the 
one with most supportive feature correspondences via vot-
ing. However, these methods, e.g., Hough transform [4, 5], 
RANSAC [3], are usually restricted to handle matching of 
a single rigid object.

By defining a graph encoding both appearance similar-
ity and pairwise geometric coherence [6, 7, 17, 32, 33] or 
even higher order constraints [34], graph matching based 

approaches exhibit more flexibility in dealing with non-
rigid object matching. Clustering based approaches, on the 
other hand, have so far sought to group together and identify 
correct matches in the underlying transformational space. 
Various clustering techniques has been exploited, includ-
ing bottom-up agglomerative clustering [8, 35], graph-shift 
based clustering [10], PageRank based clustering [9] and 
mean-shift clustering [11], etc. Deep learning has so far been 
explored and achieved good progress in various computer 
vision tasks [36, 37]. Most deep learning based matching 
approaches [14, 15] take raw images as input and design a 
deep network to learn the image level geometric transforma-
tion and identify correct matches jointly, which are typically 
used to address the stereo problems. More recently, [12, 13] 
propose to train multi-layer perceptron integrating paramet-
ric transformation to classify putative matches as inliers or 
outliers. All these approaches rely on transformational prox-
imity among matches to rule out false matches, and thus may 
fall short of robustness if transformations of false matches 
are close to those of true matches.

2.3 � Integrating Spatial proximity for feature 
matching

Spatial proximity is usually used for feature matching by 
exploring the neighborhood structural consistency nearby 
a match. LPM [18] counts the mismatched neighbor-
ing keypoints to identify unreliable matches efficiently. 
Motion smoothness among spatially close matches is also 
explored in existing approaches. GMS [19] assumes match 
inliers are grid-wisely motion consistent and detects reli-
able matches by grid-based motion consistency consensus. 
These approaches usually run in an efficient manner, but 
the matching performance depends on the appearance vari-
ation in local regions as it dominates the spatial proximity of 
the underlying matches. LMR [38] performs neighborhood 
structural consensus with a two-class SVM classifier for mis-
match removal. Besides, [21] prunes matches by checking 
their spatial and transformational proximities successively. 
[5] treats matches with keypoints on the same boundary pre-
serving local regions and similar transformations as neigh-
bors and identified matches with high neighborhood density 
as inliers.

Our work is inspired by existing studies that the transfor-
mational and spatial proximities are both helpful for wrong 
match pruning, but explores them together in the joint trans-
formation-spatial space to identify match inliers with density 
based clustering. This utilizes the complementary nature of 
two proximities and enhances performance.
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3 � Algorithm

Given two input images I and I′ , we first detect local inter-
est regions in each image using popular region detectors [1, 
39]. Each region is further affinely adapted [39] to extract 
SIFT features. Initial correspondence set M = {Mi}

N
i=1

 are 
obtained by nearest neighbor searching in the feature space. 
We then estimate an affine transformation Xi mapping each 
region pair of Mi as in [11] and compute the mutual distance 
of two transformations using STE [22]. Transformations 
and keypoint locations of all putative matches are then col-
lected to form a joint transformational-spatial space. Cor-
rect matches are then obtained via a joint domain clustering 
process, which is illustrated in Fig. 2. Details are discussed 
below.

3.1 � Joint density evaluation

3.1.1 � Kernel density estimation

The density of a match Mi is evaluated with joint kernel 
density estimation in the transformational-spatial space as

where dt
ij
 measures the transformational dissimilarity of Mi 

and Mj using STE; ds
ij
 computes the spatial distance by 

ds
ij
= 0.5 × (d

sI
ij
+ d

sI�

ij
) , with dsI

ij
 encoding the Euclidean dis-

tance between the keypoints of Mi and Mj on I; ht and hs 
denote the bandwidths in the transformational and spatial 
domain respectively. C is a constant ensuring the integral 
value of � is 1.

The kernel profile f is applied to both the transformational 
and the spatial domains in Eq. 1. The density of each match 
is estimated by the product of the two kernel terms, since 
the two domains can presumably be independent with each 
other. Moreover, the choice of kernels rarely makes signifi-
cant difference in the estimates because the difference using 
two kernel density estimates can be eliminated by setting up 

(1)�i = C

N∑

i=1

f

(‖‖‖‖‖

dt
ij

ht

‖‖‖‖‖

2)
f

(‖‖‖‖‖

ds
ij

hs

‖‖‖‖‖

2)
,

proper bandwidths [40]. Therefore, we choose the uniform 
kernel profile for f for simplicity. Formally, we define

The density �i depicts the crowdedness of correspondences 
surrounding Mi in its local neighborhood. In general, wrong 
matches should be excluded from the neighbor set of a true 
match Mi when computing �i , which is controlled by the 
kernel bandwidths with Eq. 1. Only the Mj satisfying dt

ij
≤ ht 

and ds
ij
≤ hs is considered for evaluating �i with the uniform 

kernel profile, i.e., simultaneously checking both the trans-
formational and spatial proximities is required. A transfor-
mation Xj generated by a wrong match Mj may be similar to 
the transformation Xi of Mi , however the distance between 
the keypoints of Mi and Mj is unlikely to be close at the same 
time. Consequently, it is more effective to estimate the match 
density in the joint domain rather than the individual trans-
formational or spatial space if the bandwidths are properly 
set.

3.1.2 � Adaptive bandwidth setting

Setting hs is to set a threshold for spatial distance so that the 
density evaluation for most match inliers involves only cor-
rect neighbors. Equivalently, it is to determine the upper 
bound of ds

ij
 ensuring the correctness of Mj nearby Mi.

The spatial distance between two matches can be 
impacted by the geometric variation in local area across 
images caused by viewpoint change or object deformation, 
etc. Assuming Mi and Mj situate a deformed object parts, 
then they are likely to recover two matches Mī and Mj̄ shar-
ing similar local transformations if local geometric deforma-
tion across images are relieved. This changes the spatial 
match distance from ds

īj̄
 to ds

ij
 (Fig. 3). Moreover,

with ds
īj̄
=

1

2
(|cīcj̄| + |c�

ī
c�
j̄
|) ,  dt

iī
=

1

2
(|cicī + c�

i
c�
ī
|) ,  and 

dt
jj̄
=

1

2
(|cjcj̄ + c�

j
c�
j̄
|) . The latter two terms define the trans-

formational distance between Mi and Mī as well as Mj and 
Mj̄ respectively. Equation  3 holds because |cicj| ≤
|cīcj̄| + |cicī| + |cj̄cj| and |c�

i
c�
j
| ≤ |c�

ī
c�
j̄
| + |c�

i
c�
ī
| + |c�

j̄
c�
j
|.

Next, we study first two cases to set a specific value for 
hs . (1) The local region surrounding Mi is heavily deformed. 
Then a reliable neighbor Mj ought to be very close to a cor-
rect match Mi . In extreme cases, ds

īj̄
≈ 0 and ds

ij
≤ dt

iī
+ dt

jj̄
 

actually encodes the deformation-determined spatial dis-
tance between Mi and its neighbor Mj . Consequently, we set 
hs = 2ht as ht is the upper bound of dt

iī
 and dt

jj̄
 according to 

Eqs. 1 and  2. (2) The local region surrounding Mi is not 

(2)f (x) =

{
1 0 ≤ x ≤ 1,

0 x > 1.

(3)ds
ij
≤ ds

īj̄
+ dt

iī
+ dt

jj̄
,

Joint Transformational-Spatial Clustering
Joint Density Evaluation

Adaptive Bandwidth Setting

Kernel Density Estimation Joint Mode Seeking Match Clustering

Refined MatchesPutative Matches

Fig. 2   The pipeline of match clustering in the joint domain. Please 
refer to the text for details
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deformed. In this case, the transformational constraint 
dt
ij
≤ ht can effectively reject wrong neighbors inside the 

matching object, and ds
ij
≤ hs is expected to identify the mis-

match Mj sharing similar transformation with Mi but staying 
outside the object. Thus hs is very flexible in value setting 
because the target wrong matches can assume to stay much 
more distant to Mj than those correct ones. Here, we set 
ds
ij
≤ hs = 2ht for picking out correct neighbors of Mi and 

keeping consistent with the former case. All the remaining 
cases can be seen as intermediate ones between the two 
extreme cases discussed. Therefore, we set hs = 2ht for all 
cases.

Setting ht To set ht , we observe that the density of all 
matches may take few uniform values if ht gets too small or 
too large, e.g., �i =

1

N
 for an arbitrary match Mi when ht = 0 

or ht ≥ ht_max with ht_max being the maximum distance 
between two arbitrary matches. In such cases, the density 
distribution of the joint space is not varying smoothly, which 
obscures the boundaries and modes of different clusters. By 
contrast, a proper value of ht would allow the neighborhood 
densities of matches in a cluster to vary coherently from its 
mode to verge area. We achieve this by introducing density 
entropy and minimizing it in the joint space to determine 
ht as

where �i is defined in Eq. 1. Basically, a small entropy H 
is obtained when the densities �i, i = 1...N  are assigned 
with diverse values for different matches, which results in 
a more smoothly varying density distribution. We show an 
example (Fig. 4) illustrating the change of H with varying ht 
after setting hs = 2ht . It can be observed that the value of H 
decreases rapidly with the increasing of ht , until it reaches 
the local minimum. Thereafter, H increases steadily as ht 
becomes large. Specifically, the largest entropy is reached 
when ht = 0 with each match forming a single cluster, or 
ht ≥ ht_max with all matches assigned into the same cluster. 
Finally, ht producing the minimum H is obtained in the inter-
val [0, ht_max] by gradient descent. The density evaluation in 
Eq. 1 is settled after the optimization of ht.

3.2 � Density based joint mode seeking

A mode of the joint transformational-spatial domain is 
the local maxima of underlying probability density distri-
bution according to the conventional paradigm. It can be 
defined alternatively as the point with density larger than 
all its neighbors considering the discrete nature of the joint 
domain. Formally, the modes are

where Ni denotes the neighbors of Mi,

Ni is consistent with the density estimator in Eq. 1 since all 
points in Ni are involved in evaluating the density of Mi.

Seeking the modes is done by starting from each point 
and recursively shifting to the one with maximum density in 
the neighborhood until convergence, where each stationary 
point corresponds to a local mode. The process can also be 
regarded as to find the most reliable matches, whereby their 
confidences are supported by respective neighboring points.

3.2.1 � Convergence analysis

The movement Mi making for mode seeking can be equiva-
lently expressed as

with pij =
1

|Ni|
 denoting the possibility of Mi shifting to one 

of its neighbors Mj . Consequently, pi�i (��i − �i) defines the 
highest expectable density increment, and moving to M�i

 

(4)argmin
ht

H = −

N∑

i=1

�i log �i,

(5)M = {Mi ∣ 𝜌i > 𝜌j, ∀Mj ∈ Ni, i = 1,… ,N},

(6)Ni = {Mj ∣ dt
ij
≤ ht, d

s
ij
≤ hs, j = 1,… ,N}.

(7)M�i
= argmax

Mj∈Ni

pij(�j − �i),
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Fig. 3   Matches Mi and Mj deformed from Mī and Mj̄ , which map 
nearby object parts and share similar local transformations
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Fig. 4   The changing of entropy with varying ht on an image pair
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witnesses the maximum increase in the density. In addition, 
the density keeps increasing if successive shifts are con-
ducted along the steepest ascent direction. The move step 
can never be too large to jump over the stationary point con-
sidering the discrete structure of the joint domain. Thus the 
mode seeking process is bound to converge to local modes 
after finite steps.

3.3 � Match clustering in the joint domain

The mode seeking process finds a path for each point shifting 
to a local mode in the joint transformational-spatial domain. 
The domain clustering can then be accomplished by group-
ing together the points reaching the same mode point. More-
over, two matches in the same cluster may associate with the 
same local feature in one image and thus become conflicted 
correspondences. In this case, the one with smaller density 
is pruned, whereby the one-to-one matching constraint is 
enforced within each cluster. This idea can better match 
repetitive patterns between images in comparison with exist-
ing approaches [21, 33] which apply a globally one-to-one 
matching constraint for wrong match pruning. Finally, the 
matches in significant clusters with more than a predefined 
number points (8 in our experiments) are kept and the noisy 
matches in the remaining clusters are discarded. The whole 
algorithm is summarized in Algorithm 1.

3.3.1 � Implementation details and time complexity

The main time overhead lies in density estimation, which 
requires neighbor searching for each match. We partition 
input image planes into multiple grids and hash the features 
in each grid for speeding up. The spatial neighbors of each 
match are first searched in neighboring grids based on the 
spatial bandwidth and further verified using the transforma-
tional bandwidth.

The time complexity of density estimation is kN for N 
matches with k average search trials. Computing the band-
widths usually requires to run density estimation for t ( t < 10 
in our experiments) times. Besides, each match compares its 
density with its k1 neighbors during mode seeking. Hence, 
the overall time complexity is O((tk + k1)N) , which is lower 
than existing methods [5, 10] demanding for O(N2) to com-
pute distances among initial matches, except for exclusive 
high computational steps.

4 � Experiments

Three experiments are conducted in this section. First, mul-
tiple object matching is conducted on a benchmark dataset. 
Second, duplicate object matching in a single image is tested 
on a public dataset for verifying its robustness in matching 
repetitive patterns. Third, the performance of object retrieval 
is reported by comparison with existing methods.

All experiments are run on a laptop with Intel Core 
i5 2.67 GHz CPU and 4 GB memory, with the proposed 
approach implemented in Matlab. Besides, local features are 
extracted with VLfeat [41].

4.1 � Multiple objects matching

The popular SNU dataset [42] is utilized as a test bed for 
this experiment. It consists of six pairs of images with each 
image pair containing at least 2 pairs of common objects. 
Finding object correspondences in the dataset is quite chal-
lenging because each pair of object instance undergoes ran-
dom geometric distortions, background clutters, photometric 
variations and partially occlusions, etc.

The putative matches are established by checking the 
distance ratio of features with its nearest and second near-
est features [1]. Correct matches are manually specified for 
quantitative performance evaluation. The number of putative 
and correct feature correspondences are shown in Table 1.

4.1.1 � Competitors

We compare our approach against several algorithms, 
including the hough voting (HV) [5], common visual pat-
tern discovery (CVP) [10], agglomerative correspond-
ence clustering (ACC) [8], discrete tabu search for graph 
matching (DTS) [33], ensemble of weak geometric rela-
tion checking (EWGR) [21], locality preserving match-
ing (LPM) [18], grid-based motion statistics (GMS) [19], 
neighborhood mining network (NMNet) [13] and learning 
for mismatch removal (LMR) [38]. HV and EWGR are 
implemented according to published papers, while the pub-
licly available codes of the remaining methods shared by the 
respective authors are directly used. For fair comparison, the 
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transformational incompatibility between each correspond-
ence pair is computed by the STE distance for each method 
if applicable.

4.1.2 � Evaluation metrics

The 1-precision vs. recall curves is used to evaluate the 
performance of all algorithms. The controlling parameters 
of most methods are set with 10 varying values to obtain 
increasing recall rate. For ACC and our approach, we plot 
the kth points of the curve using the recall and precision 
of all the top k largest clusters. Besides, for NMNet and 
LMR, no proper control parameter is available, and thus 
only one point is shown to demonstrate the performance of 
each method.

4.1.3 � Results

The quantitative results (Fig.  5) show that HV, EWGR 
and our approach slightly outperform other methods on 
image pairs with low transformational variations, including 
“Books”, “Bulletins” and “Toys”. This suggests integrating 
spatial proximity can complement the transformational prox-
imity for better pruning wrong matches, even if the latter one 
alone performs well in the case object pairs in input images 
are approximately affinely-transformed.

For all the remaining image groups, “Jigsaws”, “Mick-
eys” and “Minnies”, they undergo more severe viewpoint 
changes and object distortions, which enlarge the transfor-
mational difference among neighboring correct matches. 
In these cases, our method identifies more correct matches 
than the others. On the contrary, HV evaluates the density 
of a match with neighbors inside the same BPLR, which 
may misidentify wrong matches if the shared BPLR crosses 
object boundaries or contains uniform background as in 
the case of “Jigsaws”. Besides, the spatial proximity based 
approaches, namely, GMS and LPM, usually cannot guar-
antee to identify match inliers with high accuracy, but it 
is able to prune a considerable amount of wrong matches 
while saving most of the correct ones when the parameters 
are set properly. This enables them to be good preprocessing 
options for enhancing the matching performance of other 
methods. Finally, LMR and NMNet both incorporates neigh-
borhood information in a learning framework for match reli-
ability prediction. Among the two, NMNet only considers 
the transformational proximity for neighborhood feature 
extraction, which limits their performance when multiple 

object patterns with different transformations exist. LMR 
finds the spatial neighbors for each match and extracts geo-
metric features for learning, which delivers better perfor-
mance but also falls short of robustness when the object 
distortion turns severer. Overall, our approach performs 
consistently well in all cases, suggesting its effectiveness in 
identifying correct matches by integrating both spatial and 
transformational proximities in the manner of the proposed 
joint domain clustering.

To verify the effectiveness of the bandwidth selection 
process, we show the average precision and recall rate with 
standard deviation for all 6 image pairs by taking ht as differ-
ent values in Table 2. As shown, small ht leads to matching 
performance at a high precision but low recall rate, while 
large ht results in a high recall but low precision rate. By 
contrast satisfactory performance is achieved when the adap-
tively tuned values are used. Figure 6a–c show the matching 
results of “Toys” using different ht . Obviously, small ht leads 
to shrinking match clusters, and each cluster maps part of 
a object pair, and large ht results in expansive clusters with 
each cluster links a region pair overexpanding the true object 
area. By contrast, the adaptively tuned ht presents visually 
more plausible matching results.

The average time overheads of different methods are also 
collected (Fig. 7). Feature extraction and putative corre-
spondence constructed shared by all methods are excluded 
from the time statistics. HV, ACC and CVP generally 
requires relatively longer running time, while GMS, LMR, 
NMNet and our approach all can match two images within 1 
s. Among the last four ones, the proposed method is slightly 
slower than the other three, with the largest margin less than 
0.4 s. Given the final precision and recall rate reported, our 
approach outperforms 6 out of 9 competitors in terms of 
both effectiveness and efficiency, and achieves considerable 
performance gain over the remaining three with a slightly 
higher time overhead cost.

4.2 � Matching duplicate objects in a single image

This experiment is done with the single image test set of 
identical object segmentation [43]. It contains 10 images, 
with 8 containing objects with more than 2 duplicates 
selected for testing. Initial matches are computed by finding 
3 nearest neighbors for each feature in the descriptor space. 
Matches with two keypoints of distance less than 10 pixels 
are deemed unreliable and discarded. The odd and even rows 
of the first four columns in Fig. 8 show the original images 

Table 1   The number of putative 
and correct matches of image 
groups in the SNU dataset

Books Bulletins Jigsaws Mickeys  Minnies Toys

#correct 1024 419 182 118 200 681
#putative 3036 2202 2347 1873 1572 2960
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and our results respectively. Two results of DTS [33] and 
ACC [8] are displayed in the last column.

Our approach can successfully reveal most of the cor-
respondences among duplicated objects, with each linked 

by one or more matching clusters. ACC delivers clusters 
with wrong matches scattered in the image background due 
to no spatial proximity check. DTS on the other hand, pre-
sents sparse matches for some of the duplicated object pairs, 
partly because each feature can only be matched once under 
the global one-to-one matching constraint. Evidently, distin-
guishing different duplicated pairs for DTS requires further 
postprocessing.

4.3 � Object retrieval

The dataset for this experiment is a subset of the Oxford 
dataset [44], which consists of 748 landmark images, includ-
ing 55 query images depicting 11 different architectures. 

Fig. 5   Performance comparison 
of multiple object matching in 
terms of 1-precision (horizontal 
axes) and recall (vertical axes) 
on the SNU dataset
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Table 2   Average precision and recall with standard deviation on the 
SNU dataset when setting ht as adaptively tuned value Tuned as well 
as Tuned −10 and Tuned +10 respectively

Tuned Tuned −10 Tuned +10

Precision (%) 0.927 ± 0.042 0.961 ± 0.015 0.819 ± 0.072

Recall (%) 0.960 ± 0.008 0.876 ± 0.055 0.977 ± 0.009
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For each query image, a rectangle is defined to specify the 
retrieval region, and all the remaining images are classi-
fied as good, ok, bad and junk. The retrieval performance is 

measured over all the query images by mean average preci-
sion (mAP), as described in [45].

Several retrieval algorithms are taken for comparison, 
including bag-of-visual-word (BoVW) [45], spatial pyra-
mid matching (SPM) [46], improved k-nearest neighbor 
searching (k-NNI) [47], feature matching with RANSAC 
verification (RANSAC). For BoVW and SPM, 10 K visual 
words are trained with k-means using 1 M features randomly 
selected from feature sets of all images. For the two spatial 
verification based approaches, RANSAC and ours, images 
are first ranked according to the number of features suc-
cessfully matched to query image, and then the unmatched 
images are re-ranked using the k-NNI algorithm. Besides, 
the performance of our approach without re-ranking is also 
reported.

Table 3 shows the comparison result. Overall, RANSAC 
and our approach perform better than k-NNI, which indicates 

ht = 35(a) (654 / 684) (b) ht = 20 (415 / 432) (c) ht = 60 (667 / 793)

Fig. 6   Matching results with different ht on an image pair. The number of correct and returned matches are shown in the parentheses
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Fig. 7   Average running time (in seconds) on the SNU dataset

Fig. 8   Matching multiple duplicate objects in a single image. The first four columns show the original images and our results with different color 
depicting different matching clusters. The last column shows the results of DTS (odd rows) [33] and ACC (even rows) [8]
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the necessity for integrating geometric verification during 
feature matching. Finally, our approach further outperforms 
RANSAC even though most of the query images only contain 
one landmark, which suggests our approach can better handle 
object matching under complex conditions.

5 � Conclusions

In this paper, we introduce a density-based clustering 
approach in the transformational-spatial joint domain for 
feature matching. Unlike existing methods incorporat-
ing either transformational or spatial proximity among 
matches or checking both proximities to refine the puta-
tive match set, we propose to identify match inliers by 
grouping together transformationally and spatially coher-
ent matches through density estimation and mode-seek-
ing based clustering in the underlying joint domain. To 
enhance the scalability of our approach, the bandwidths 
for measuring both proximities during density estima-
tion is adaptively tuned. Experiments on multiple data-
sets show that the propose approach outperforms existing 
methods in the task of multiple object matching across 
images, duplicate object matching in a single image, as 
well as object retrieval.
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