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Abstract. Blur measurement of partially blurred image is still far from
being resolved. This calls for more distinctive blur features and, even
more importantly, a global refinement strategy that has not been con-
sidered by existing studies. In this paper we propose a new spatial and
frequencial coupled blur descriptor by composing the number of extreme
points, the vector of all singular values and the entropy-weighted pool-
ing of the high frequency DCT coefficients. We also introduce a global
refinement scheme to explore the merits of saliency for further refin-
ing the initial measurements. Consequently, we propose a novel saliency
constrained blur measurement method by integrating a neural network
based blur metric and a superpixel-scale blur refinement together. Ex-
perimental results show the efficiency of our method qualitatively and
quantitatively, especially for the images with flat textures.
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1 Introduction

Partially blurred images widely exist in our daily lives due to the intentionally
or unintentionally motion or defocusing capture. Detecting the blur degree for
each pixel in these images is important for many tasks, including image seg-
mentation, depth estimation, image deblurring, and refocusing. There still lacks
of an efficient method to this inverse problem although there have been many
studies on it. In this work, we first introduce a new blur descriptor so that an
initial measure for each pixel can be efficiently obtained. It is easy to see that
the estimated metric usually appears inconsistent between neighborhoods if on-
ly local features are used and the global information is ignored. To address this
problem, we further present a global refinement to improve the local metric by
exploiting global information, which can effectively remove wrong measurements
especially for regions with flat textures. To the best of our knowledge, the global
refinement has not been reported in the previous literature.

⋆ Corresponding author.
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Our method does not assume particular blurring models [1, 2] and thus is
general and applicable for real scenes. Our proposed blur descriptor includes
both spatial and frequencial features so that spatially visual appearance and
anti-noisy frequency characteristics can be complementary to each other. It is
effective from three aspects in comparison with existing multi-feature oriented
methods [3–5].

First, spatially, we introduce the extreme point [6] as a blur feature, which
was previously applied to texture analysis due to its embedded structure infor-
mation. Extreme point is more sparse and thus distinguishable by counting its
numbers than the widely used gradient [7, 8] among spatial features [9, 10].

Secondly, we take the complete set of singular values as a spatial complemen-
tary to the counting based extreme point because all singular values may vary
significantly after blurred. A larger singular value often captures larger scale in-
formation, and the blurred image keeps the shape structures at large scale and
discards the image details at small scale. The idea is also simple to apply with-
out the burden of manually selecting the high-scale singular values presented in
exiting methods [11, 12] which may obtain biased results for different images.

Thirdly, we adopt the state-of-art frequencial feature [13] which is the entropy-
weighted pooling of a novel DCT based High-frequency multiscale Fusion and
Sort Transform (HiFST) of gradient magnitudes. This metric is robust to noise
distortion in comparison with existing frequenicial features [14, 15].

However, wrong measurements seem unavoidable because each blur metric
is local and can be easily miscalculated when there are locally clear flat tex-
tures. Some existing refinement studies [9, 13, 12, 1] are still local because they
only refer to the neighboring pixels. The low-frequency properties are shared by
both the blurred region and the flat texture and thus makes the locally spatial
or frequencial features fail. Therefore, a global refinement strategy is highly de-
sirable so that the overall scene distribution can be exploited to constrain the
measurement, considering that flat texture appears very often in real scenes.

We can clearly see the object without difficulty if observing a blurred scene
even with many flat textures. This insight inspires us to consider the importance
of visual saliency [16] for a seemingly messy scene. Salient object [17] is the only
one standing out in the scene considering the fact that humans have difficulty in
paying attention to more than one simultaneously. The partially blurred image
is also of no exception, where both the blurred and the unblurred regions in a
nature scene can be either salient or unsalient. Therefore, we propose a saliency
constrained measurement refinement method so that saliency is used as a global
representation of an image and thus helps refining the blur measurement globally
and eliminating wrong measures.

In the method, we adopt a neural network (NN) based learning approach
to obtain the blur measure which is good at fuzzy inference by simulating the
work of human brain and thus fits well with the visual perception of blur. We
also take a superpixel based strategy to accelerate the saliency constrained blur
refinement process. A bilateral filter is used to obtain a structure-preserved pixel-
wise consistent blur measurement finally.
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2 Our Blur Metric

2.1 Spatial and Frequencial Coupled Blur Descriptor

The proposed descriptor consists of three components: the number of extreme
points, the vector of all singular values, and the entropy-weighted pooling of the
high frequency DCT coefficients. Therefore, the blur descriptor, Bi,j , for each
pixel at (i, j), pi,j , in the blurred M ×N image I can be defined as

Bi,j = (Li,j ,Vi,j , Di,j) (1)

with Li,j , Vi,j and Di,j denoting the number of extreme points, the vector com-
posed of all singular values, and the entropy-weighted pooling of the high fre-
quency DCT coefficients.

Extreme points. Local structures represent the local directions and intrinsic
signal dimensions [6] and image extrema can be divided into five structure classes
by intensity distribution: ’|’, ’–’, ’/’, ’\’ and ’*’. The first four classes are one-
dimensional except the last one being two-dimensional. The local minimum is
weak for a blurred image and therefore the local maximum is considered in our
work as extreme point. The extreme points show the high frequency information
spatially and thus can depict the blur degree of each pixel.

Figure 1b shows the total number of each ideal extreme class in the four
blurred or clear 40 × 40 regions specified in Figure 1a. The first four structure
classes are few for all the regions while the blurred regions (Regions #1 and
#2) are null and thus more sparse. However, for the fifth class, the clear regions
(Regions #3 and #4) contain apparently more extreme points than the blurred
regions (Regions #1 and #2). The map of the number of extreme points of the
fifth structure class (Figure 1c) also shows this observation. Therefore, the fifth
class can be more efficient and is adopted by us as a part of the blur descriptor.
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Fig. 1: An example of the extreme point feature. (a): The example image with
four specified clear or blurred regions; (b) the numbers of extreme points for the
four regions in (a); (c): the map of the number of the extreme points belonging
to the fifth structure class; and (d): the blur measurement abilities of extreme
points and gradient.
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Let us denote the intensity of pi,j being Ei,j . The noise-free definition of
extreme point belonging to the fifth class, ’*’, for the center of a 3× 3 area is

+1∩
i=−1

+1∩
j=−1

|i|+ |j| ̸= 0

Ei,j > Ei+k,j+q (2)

where k and q are the numbers constraining the position of Ei+k,j+q inside the
area, and |k|+ |q| ̸= 0 so that the maximum condition is kept.

Figure 1d shows the performance of the extreme points in comparison with
the widely adopted gradient. The number of extreme points belonging to the
fifth structure class for a 8 × 8 region surrounding each pixel is counted. The
max differences of either gradient or number of extreme points for each line
between the top and the bottom lines of the clear object, No. 100 and 300, are
computed, considering that the maximum and minimum of either gradient or
number of extreme points in each line represent the clear pixel and the blurred
one respectively. It can be seen that the extreme points are more discriminative
than gradient and can be an effective feature for blur measurement.

Singular values. An image I can be decomposed into the weighted sum of n
eigen-images by Singular Value Decomposition (SVD) as follows,

I =
n∑

i=1

λiEi (3)

where λi(1 ≤ i ≤ n) are the eigen values in a decreasing order and Ei(1 ≤ i ≤ n)
are rank-1 matrices called eigen-images. The eigen-images capture different de-
tailed information: The more significant eigen-images, the larger scale informa-
tion captured. A blurred image keeps the shape structure at large scale while
discarding the image detail at small scales. Therefore, singular values can depict
the subtle differences between blurred and non-blurred pixels.

We take the vector of all the singular values. Figure 2a shows this principle.
Each region can have relatively high λ1 for the largest scale, but its remaining
eigen values for smaller scales vary differently: they are more significant in the
clear region (Regions #4-#6) than the blurred one (Regions #1-#3) (most of
them are nearly null). In addition, λ1 for the blurred regions varies significantly
with some regions (e.g., Regions #5 or #6) even close to the clear ones. Con-
sequently, manually selecting the most significant singular values [11, 12] can be
invalid. Therefore, the complete set of singular values is adopted by us as an
efficient part of the blur descriptor, i.e., Vi,j = (λ1, . . . , λn).

DCT coefficients. DCT aims to transform a signal from spatial to frequencial
space with cosine functions. High frequencies are sparse with mostly null in
comparison with the other ones for a blurred image. Therefore the high frequency
DCT coefficients can be used to measure the blur degree. We adopt the efficient
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Fig. 2: Demonstration of the singular value feature. (a): The example image with
six specified rectangular regions (three blurred regions and three clear ones); (b)
comparison of the singular values among the six specified regions in (a). Note:
The singular values are ordered in a decreasing order.

DCT feature, HiFST [13] which extracts and combines the high-frequency DCT
coefficients of the local area in the gradient image multiresolutionally into a
vector with their absolute values sorted in an increasing order. Assume the patch
size as W × W and the vector consisting of the absolute high-frequency DCT
coefficients of pi,j as HW

i,j . The multi-scale HiFST decomposition is

Fi,j = sort(
m∪
r=1

HMr
i,j ) (4)

where sort(·) is a function for incremental ranking, m is the lay total, Mr =
22+r − 1 controls the patch size in different layers.

Fi,j is normalized to effectively differentiate clear and blurred regions and
the final blur measure is computed through a entropy-weighted max pooling,

Di,j = Ti,j .ωi,j (5)

where Ti,j is obtained by the max pooling of Fi,j among W 2+W
2 frequency layers

and ωi,j is the entropy of T computed by k × k neighborhood surrounding the
corresponding pixel in T . Please refer to [13] for more details on HiFST.

2.2 Learning the Blur Measure with Neural Network

We take the NN approach to train a classifier as the metric to estimate the initial
blur degree with the blur descriptor. Especially, backpropagation (BP) neural
network [18] containing only three layers (input, output, and hidden layers) is
used. It is simple to deploy, fast to train, and also experimentally robust.

3 Saliency Constrained Refinement of Blur Measurement

3.1 Relationship between Saliency and Blur Measure

The blur metric based on the above NN classifier may fail due to flat texture
which constitutes a common difficulty for all existing blur measurement methods.
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Interestingly, we can see clearly the whole blurred object(s) when observing
a partially blurred image even with clear flattened texture. This observation
intrigues us to look into the role of of visual saliency in separating the blurred
and clear regions. A salient object is the only one viewed by a human due to the
difficulty of viewing more than one simultaneously. Therefore, the corresponding
saliency map can be exploited to refine the measurement globally.

Figure 3 illustrates the principle of saliency for blur refinement. The accurate
blur measurement (Figure 3b) is obtained with the state-of-the-arts method [13]
for fair demonstration. This measurement and the saliency map (Figure 3c) show
the same intensity distributions which can be justified by comparing them di-
rectly (Figure 3d): The difference of blur measures increases when the difference
of the saliencies increases. The bigger difference of the saliencies means the more
possibility of the pixels belonging to different objects and having different blur
degrees. Therefore, saliency can be used to refine the blur measures so that the
pixels having the similar saliencies can be refined to have similar measures.
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Fig. 3: Illustration of the relationship between blur measure and saliency. (a):
The example image; (b) the accurate measurement of (a); (c): the saliency map;
(d): the statistical relation between saliency and blur measure.
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Fig. 4: An example of the saliency constrained blur measurement refinement. (a):
The example image; (b): the saliency map; (c): the inaccurate measurement by
Golestaneh and Karam [13]; (d): the refined measurement.

The observation from Figure 3 is important for images with flat texture which
show low frequency distributions as the blurred regions. Saliency consistencies
can then be adopted to refine the measures. Figure 4 shows the example car
has apparent flat texture (Figure 4a). The state-of-the-art method (Figure 4c)
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cannot correctly measure it with many false estimations in the car, while our
saliency constrained method (Figure 4d) obtains more visually correct results.
The details of the saliency constrained refinement is described as follows.

3.2 The Saliency Constrained Refinement Strategy

Assuming the blur measure and saliency of the current pixel pc being Bc and Sc

and its N neighbors being Bc = {B1, B2, . . . , BN} and Sc = {S1, S2, . . . , SN} re-
spectively. The refined Bc, B̂c, relies on not only its own initial blur measurement
(prior) P (Bc) = Bc, but also Sc and Sc, considering that the neighbors shar-
ing the similar saliency should be similarily blurred. Therefore, the refinement
process can be formulated as a maximum a posteriori (MAP) estimation,

P (Bc|Bc, Sc, Sc) ∝ P (Bc;Sc; Sc|Bc)P (Bc)

∝ P (Bc|Bc)P (Sc, Sc|Bc)P (Bc)
(6)

by assuming the conditional independency between the blur measure and the
saliency. It can be further rewritten as:

P (Bc|Bc, Sc,Sc) ∝
∏
i

P (Bi|Bc)(
∏
i

P (Si|Bc))P (Sc|Bc)P (Bc). (7)

The closer Bi to Bc is, the more similar they are. The same observation can
also be applied to Si and Sc. Therefore, this type of relationship can be described
as a Gaussian distribution,

P (τj |τc) ∝ e−(τj−τc)
2

, τ ∈ {B,S} (8)

Now taking the posterior distributions, P (Bj |Bc) and P (Sj |Sc) (Equation 8)
into Equation 7 and deriving its right side w.r.t Bc, we can then deduce the
solution of B̂c by Equation 7 via MAP estimation as

B̂c ∝ argmax
Bc

ln
∏
i

P (Bi|Bc) + ln
∏
i

P (Si|Bc) + lnP (Sc|Bc) + lnP (Bc)

∼=
∑

i Bi

N
+ g(Sc, Sc, Bc)

(9)

where g(Sc,Sc, Bc) is the derivative of ln
∏

i P (Si|Bc) + lnP (Sc|Bc) w.r.t. Bc

and determines the contributions of Sc and Sc to Bc.
Directly solving g(Sc, Sc, Bc) in Equation 9 is difficult due to the lacking of

proper formulations of the embedded distributions. Intuitively, the smaller the
saliency difference between Si and Sc is, the smaller the difference between Bi

and Bc is and thus the more B̂c relies on Bi. In addition, a neighboring pixel is
invalid as the reference when its saliency is significantly different from Sc, i. e.,
they lie on different objects. Therefore, g(·) can be formulated as

g(Sc, Sc, Bc) =
∑
i

max((e−α(∥Si−Sc∥) − β), 0)Bc (10)

where α translates the weight to be in a more distinugishable range and β con-
trols the threshold for a valid reference.
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3.3 Our Measurement Algorithm

Directly applying the above pixel oriented idea can be slow and, therefore, we
take a superpixel strategy to accelerate the measurement process, considering the
regional constancy in the image. Accordingly, the average measure and salien-
cy of each superpixel from the initial blur measurement and saliency map are
adopted for a superpixel-scale refinement. Then a bilateral filtering is used so
that pixel-consistent but also structure-preserving results can be obtained.

Figure 5 gives the pipeline. Both Figure 5b and Figure 5c are obtained in the
pixel scale by the pre-trained NN classifier and the saliency detection algorith-
m, respectively. Then the superpixel-scale refinement (Figure 5e) is iteratively
applied according to the superpixel segmentation (Figure 5d) until the salien-
cy consistency is satisfied. Finally, bilateral filtering is applied to obtain the
measurement output (Figure 5f).

(a)

(b)

(c)

(d)

(e) (f)

Fig. 5: The pipeline of the proposed measurement algorithm. (a): The input
partially blurred image; (b): the blur measurement; (c): the saliency map; (d):
the superpixel segmentation; (e): the superpixel-scale refinement; and (f): the
final output by the bilateral filter.

The supperpixel segmentation is obtained by the simple linear iterative clus-
tering (SLIC) [19] and the saliency is detected by the discriminative regional
feature integration (DRFI) [20]. A sourrounding superpixel can be from a dif-
ferent object in a high probability if its saliency is larger than that of the center
suprpixel. In this case, the surrounding superpixel is invalid as the reference for
Equation 10. Therefore, only the saliency of the superpixel with the max weight
among neighbors is considered in Equation 10.

4 Experimental Results

Our method is formatted into two versions to show the performance of the salien-
cy constrained refinement: Our method without saliency and our method. The
former does not include the saliency constrained refinement while the latter is
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the complete implementation of the proposed method. Previous algorithms to
be compared include Liu et al. [3], Chakrabarti et al. [21], Su et al. [11], Shi
et al. [4], Shi et al. [9], Tang et al. [15], Yi and Eramian [10] and Golestaneh
and Karam [13]. The experiments were performed on the dataset of Shi et al. [4]
which includes 294 motion blurred images and 704 defocus ones. In the imple-
mentation of our method, there are 20 nodes in the middle layer of BP with the
max iteration, error threshold and learning ratio are set to 5000, 0.00006 and
0.004, respectively; the approximate size of each supperpixel, and α and β in
Equation 10 are set to 10, 10 and 0.7, respectively; and the max iterations of
the refinement is set to 3.

Fig. 6: Qualitative comparison of the blur measurement performance.

Figure 6 shows the qualitative results of different methods. The top-listed
four images are richly textured while the remaining 12 images contain some flat



10 X. Fang et al.

textures (Those nearer to the bottom generally contain larger flat textures). The
results of our method without saliency are comparable with the best ones of the
previous methods and our method produced consistently better results without
significant wrong measure than all other methods, partially due to the benefits
of the saliency constrained global refinement.

Statistical comparison of different methods was performed using the precision-
recall curve. Two types of comparison were taken: One is the comparison with all
images in the dataset of Shi et al. [4] and the other is with only the images con-
taining apparently flat textures (Figure 7) in the dataset (There are 82 images in
total). Figure 8 shows our method achieved better results than all other methods
for both comparisons and even our method without saliency performed better for
the flatten textures images than Golestaneh and Karam [13] (Figure 8b). The
robust extreme points introduced in our approach are significantly sparse in the
blurred area and thus are extraordinarily effective for the low textured images.

Fig. 7: Examples of the image with flat textures for the statistical comparison.
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Fig. 8: Statistical comparison of the blur measurement performance. (a): Com-
parison with all images in the dataset; and (b): comparison with only the images
containing flat textures (Figure 7).

5 Conclusion

This paper proposes three contributions: 1) A novel blur descriptor consisting of
the number of extreme points, the vector of all singular values, and the entropy-
weighted pooling of high frequency DCT coefficients; 2) a global refinement
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strategy using the saliency map to update the initial blur measurement; and 3)
a novel blur measurement method which integrates the NN classifier as a blur
metric for the initial blur measurement, the superpixel-scale refinement with
the saliency constraint and the bilateral filtering for final structure-preserving
oriented output. Experiments show the proposed method is effective, especially
for the images with flat textures.

Our method can be very slow for a large image and thus we will study
faster algorithm in the future. Current method may not work well when saliency
detection fails. Therefore, more effective global refinement strategy is also one
of our future directions for a better blur measurement.
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