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Abstract We propose a novel method to stitch images with
relatively large roll or pitch called relaxed motion, which
defies most existing mosaic algorithms. Our approach adopts
a multi-resolution strategy, which combines the merits of
both feature-based and intensity-based methods. The main
contribution is a robust motion estimation procedure which
integrates an adaptive multi-scale block matching algorithm
called TV-BMA, a low contrast filter and a RANSAC motion
rectification to jointly refine motion and feature matches.
Based on T V − L1 model, the proposed TV-BMA works
on the coarsest layer to find a robust initial displacement
field as the initial motion for source images. This motion
estimation method can generate robust correspondences for
further processing. In the subsequent camera calibration step,
we also present two stable methods to estimate the camera
matrix. To estimate the focal length, we combine the golden
section search and the simplex method based on the angle
invariance of feature vectors; to estimate the rotation matrix,
we introduce a subspace trust region method, which matches
features based on the rotation invariance. Extensive exper-
iments show that our approach leads to improved accuracy
and robustness for stitching images with relaxed motion.
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1 Introduction

Image mosaic or stitching refers to the problem of merging
multiple images with overlapped views into a single com-
position. The traditional methods can only deal with camera
rotating around a nearly fixed optical center. Using the terms
in flight dynamics (Fig. 1a), this rotation direction is yaw
(rotating around the vertical axis) with a nearly fixed optical
center. However, (Fig. 1b), during the actual photographing
process, rolling and pitching are also difficult to avoid. In
this figure, line d bisecting the current image I1 denotes the
ideally horizontal position of the camera as it yaws around
the nearly fixed optical center. The next image, I2 or I3, is
taken with slight camera motion; However, I4 is then taken
with relatively large camera motion. While existing studies
[1] can effectively stitch slightly rolled or pitched images
(I2 or I3 with I1 in Fig. 1b), to our best knowledge, there
is no study on how to align relatively large rolled or pitched
images (I4 with I1 in Fig. 1b). Referring to this type of camera
motion as relaxed motion, we will study this motion problem
in this paper and present a solution to image alignment and
stitching.

Relaxed motion may come under the following two cir-
cumstances: (1) During the tedious capturing process, the
user may carelessly rotate the camera in larger roll or pitch
and (2) sometimes the user may deliberately rotate the cam-
era in large roll or pitch to include some objects. Figure 2a
and b show two examples from real scenes with unknown
large roll or pitch. Their pixel correspondences are difficult
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Fig. 1 Illustration of the
relaxed motion. a Camera
rotation directions in flight
dynamics terms with o being the
optical center. b The real camera
motion during photographing.
I1 (with black edges) is the
current image. I2 (with blue
edges), I3 (with green edges) or
I4 (with red edges) is the
subsequent image taken. Notice
I4 is obtained with larger roll or
pitch than I2 and I3

(a) (b)

Fig. 2 The examples of relaxed
motion. We can see that the
positions of the corresponding
structures in both image pairs
have changed considerably due
to large roll or pitch. These
image pairs are difficult to be
finely stitched with traditional
methods. a Example of two
640 × 480 images. b Example
of two 1, 024 × 768 images

to compute and thus it is difficult to stitch them finely with
traditional methods.

There are generally two types of image stitching methods:
direct and feature-based method [1]. Direct method, such as
[2–4], obtains the motion by directly minimizing the inten-
sity difference. Some general methods, such as block match-

ing algorithm (BMA) [5] and phase correlation [6], also fall
into this category. Feature-based method, such as [7–10],
refines motion with detected pixels (features), such as the fea-
tures (e.g., Harris, Harris-Affine, SIFT) discussed in [11,12].
Both direct method and feature-based method have limita-
tions. The direct method can easily end up to local optimum
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in its intensity difference minimization, while feature-based
method heavily relies on the distribution and salience of the
features. This paper proposes an approach that effectively
combines the merits of the two types of methods while avoid-
ing the drawbacks.

Our approach is a multi-resolution stitching as it can
update the camera parameters layer by layer and refine the
calibration iteratively. For the coarsest layer, direct feature
matching is unstable because of the limited features detected.
A rough initialization obtained from direct method can be
used to guide the feature matching. For the left layers, there
may be many local optima when applying direct methods.
But there are many different texture blocks which provides
enough features for the feature-based method. Therefore,
our multi-layer-based approach uses direct method in the
coarsest layer to obtain the rough displacement field as the
initial motion and uses feature-based method in the subse-
quent layers for refining the projective motion and camera
parameters.

Feature matching is initialized by the estimated motion
matrix and thus the estimation quality is very important for
the further camera parameters computation. A robust motion
estimation strategy is introduced to calculate motion and
refine feature matching. In this strategy, a new adaptive BMA
algorithm called TV-BMA is developed for the coarsest layer.
Based on the regularized total variance (TV) by L1-norm or
T V − L1 model, TV-BMA effectively computes the globally
optimal displacement field with adaptively selected TV-scale
images as the initial motion. In addition, two additional steps
are taken in all layers to ensure an efficient projective motion:
(1) A low contrast filter based on the edge response function
is used to remove unstable matching pixels for the accurate
localization of the matching features and (2) RANSAC is
further used to remove the outliers and refine the motion.

The focal length and rotation matrix of each image can
be estimated using the angle-invariant property of feature
vectors and rotation-invariant property of feature matches.
Formulated as a least squares problem, robust optimization
method is the key to the convergence, where we also intro-
duce a robust optimizer. The focal length is initialized by the
golden section search and refined by the simplex method.
The rotation matrix is obtained by the subspace trust region
method.

This paper is organized as follows. After reviewing related
work (Sect. 2), we will focus on our multi-resolution stitching
method, i.e., the estimation of parameters in each pyramid
layer. It consists of (1) the initial motion estimation algorithm
TV-BMA for the coarsest layer (Sects. 2, 3) the remaining
steps in the motion estimation strategy (the low contrast fil-
ter and RANSAC rectification) (Sects. 3, 4) the focal length
estimation based on the angle invariance of feature vectors
(Sect. 5) and the rotation calibration based on the rotation
invariance of feature matches (Sect. 6). After the parameter

estimation within each layer is discussed, Sect. 7 presents the
proposed multi-resolution method and Sect. 8 presents exper-
imental results. Discussions on this research are presented in
Sect. 9 and the whole paper is concluded in Sect. 10.

2 Related work

Image stitching has a broad literature both in computer vision
and computer graphics. In this section, we overview some
algorithms that are closely related to our work. Interested
readers can refer to [1] for more studies.

Perhaps the most important work is Szeliski et al. [13]
which proposes a patch-based alignment to refine camera
parameters with fine adjustment of the patch correspon-
dences. However, there are two limitations in this study: (1)
The patches are simply the square blocks evenly cut out from
the image and thus this method produces huge numbers of
patches or features and (2) the patch correspondences are
built from the patch centers which might be of low contrast,
flatly textured and illuminance-sensitive, and, therefore, the
estimated motion can be unstable.

Zhou [14] proposed another approach, which in com-
parison with Szeliski et al. replaces the patches with lim-
ited number of features and applies a robust scheme based
on the angle invariance of feature vectors and the rotation
invariance of feature matches. A BMA based on illumina-
tion normalization (illumination-BMA) is also introduced to
find the initial displacement field to refine feature matching.
But the golden section search method to refine camera focal
length is unstable because it lacks techniques to utilize the
results from previous layer and can easily lead to local min-
imum. Their work does not state clearly which method is
their best choice for rotation estimation among M-estimator,
L-estimator, R-estimator and SVD. In this paper, we employ
the similar idea from the illumination-BMA algorithm, the
angle-invariant property and the rotation-invariant property.
But we propose the simplex and the subspace trust region
methods to refine the focal length and the rotation matrix,
respectively.

Both approaches of Szeliski et al. and Zhou suffer from
poor quality of the initial motion estimation which is very
important as the initial guess for further refinement. In par-
ticular, when the neighboring images have a relatively large
roll or pitch, the overlap area will have quite different pixels
and thus it is difficult to reach global optimum. To counter
this limitation, Chen et al. [15] propose the mutually exclu-
sive scale component (MESC) to improve the initial motion
estimation. MESC is built on the regularized total variance
model T V −L1 [16] and decomposes each image into several
independent scale images (TV-scale images). In this man-
ner, original one-pass matching of the whole image is turned
into multi-pass matching with several TV-scale images. By
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flattening the surface texture and thus retaining the object
shape, it is much easier to find global optimal motion with
TV-scale images than previous approaches for images with
large roll and pitch.

Chen et al. work with satellite images, so the affine
assumption of motion is valid. However, we are faced with a
more challenging problem where images are captured with
a hand-held camera of free projective motions. In addition,
their registration method with three different MESC layers
(scales) does not apply well in the general case where image
resolution could vary considerably. Another disadvantage of
Chen et al.’s approach is that the illumination normaliza-
tion step is unstable because of the approximated reflectance.
To overcome these limitations, we propose a new approach
called TV-BMA, where TV-scale images with adaptive scale
patterns are adopted to the illumination-BMA for estimat-
ing the horizontal and vertical displacements in the coarsest
layer.

Unlike existing stitching studies, we propose two addi-
tional steps to refine the motions obtained from the previous
layer. Since edge response function from Harris corner detec-
tor [17] has been proved to be an effective tool to remove
low contrast features [12], we adopt it to remove low con-
trast pixels which might be flatly textured during the local-
ization of matching features. To further improve the quality
of feature matches, RANSAC [18], which has been proved
to be very robust to remove outliers [8,19], is also incorpo-
rated.

Recently, there are two studies that also rely on the invari-
ance properties of feature vectors and matches [20,21]. Our
method avoids their complex parameterizations and instead
iteratively refines the varying focal length and traditional
9-parameter rotation of the camera.

3 Motion initialization under T V − L1 model

Assume two images Ii and I j are the source images to be
mosaicked. They have the same size and are decomposed into
a L−layer image pyramid. All images I l

m(m ∈ {i, j}, 0 ≤
l ≤ L − 1) on each pyramid are piled with increasing size
from top to bottom and indexed from 0 to L − 1. TV-scale
images created from T V − L1 model are utilized to find an
optimal displacement field between the coarsest (top) layers
of two source images. This displacement field is set to be the
initial motion in the coarsest layer.

The MESC algorithm inspires TV-BMA and is built on the
TV-scale image obtained from T V −L1 model. Therefore, in
the following, short introductions to the T V − L1 model and
its alternating solution will be given first. Then, MESC algo-
rithm and traditional illumination-BMA algorithm will be
reviewed briefly. We discuss the TV-BMA algorithm toward
the end of the section.

3.1 The T V − L1 model

Rudin, Osher and Fatemi (ROF) [22] first proposed the fol-
lowing constrained TV model for minimizing the total var-
iation (TV) of the image I for its restoration or denoising.
Defining the gradient of a gray image I as ∇ I and its region
as � yields the TV minimization problem

min
∫

�

∥∥∇ I
∥∥

2

s. t. I + n = I∫

�

‖n‖2
2 ≤ σ 2

(1)

where I is the restored I without noise,
∫
�

∥∥∇ I
∥∥

2 is the total
variance of image I , n is the noise and σ 2 is an estimate of
the noise variance in the image I .

In order to solve this problem, ROF and subsequent
researchers considered the constrained minimization prob-
lem. Among them, Chan et al. [16] proposed the regularized
L1 functional, T V − L1 model, which uses the L1-norm
as a measure of fidelity between the observed and denoised
images

min
∫

�

∥∥∇ I
∥∥

2 + λ
∥∥I − I

∥∥
1 (2)

Two important properties in Eq. 2 make it especially
attractive to us: (1) It can be used to extract different scale
components according to different scales by setting different
λ and (2) any particular pattern only exists in either I or n. For
traditional Gaussian scale image or Laplacian pyramid, on
the other hand, it is impossible to contain exclusive patterns,
i.e., it is difficult to remove patterns with different scales. As
demonstrated in [15], if there are different scales appearing
in the same image, one may not end up with the desired solu-
tion. But an image can be decomposed by Eq. 2 progressively
with each decomposition only representing patterns of one
scale.

For images captured with relaxed motion, if the suitable
comparison scale patterns exist in their respective TV-scale
images, comparison between them then turns into compar-
ing the representative shapes of flattened structures without
having to look at quite different pixels. Therefore, such type
of comparison can effectively avoid local optima. Since the
illumination-BMA is robust in the traditional mosaic, we pro-
pose TV-BMA so that the TV-scale image with adaptive scale
can be integrated with the illumination-BMA for motion ini-
tialization.
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3.2 The efficient alternating solution to T V − L1 model

The alternating algorithm proposed by Yang, Wang, Yin and
Zhang [23–25] is used to solve the TV-regularization prob-
lem for recovering the images from blurred and noisy obser-
vations. This algorithm is fast and efficient. Its per-iteration
mainly consists of several fast Fourier transforms, which is
based on the half-quadratic technique proposed by Geman
and Yang [26]. This algorithm can have different forms
depending on 1-norm or 2-norm fidelity, and gray or color
image. In the following, we will briefly review the techniques
for recovering color image I with 1-norm fidelity, or with the
T V − L1 model. For more details of this algorithm, please
refer to related work [23–25].

Let Im be the identity matrix of order m,⊗ be the Kro-
necker product and (Im ⊗ Di )I be the first-order horizontal
and vertical finite difference of I at pixel i . The discrete form
of Eq. 2 is

min
I

∑
i

∥∥(Im ⊗ Di )I
∥∥

2 + λ
∥∥K I − I

∥∥
1 (3)

Equation 3 can be generalized as a local weighted T V −
L1-like model

min
I

∑
i

αi
∥∥Gi I

∥∥
2 + λ

∥∥K I − I
∥∥

1 (4)

where αi > 0 is a weighting parameter.
Let z ∈ � (� is the space of I ) and wi ∈ R

q (q is the
positive integer denoting the number of finite differences) be
the auxiliary variables that approximate K I − I and Gi I in
Eq. 4. According to the half-quadratic technique [26], Eq. 4
can be approximated by

min
w,z,I

∑
i

(
αi‖wi‖2 + β

2

∥∥wi − Gi I
∥∥2

2

)

+λ
(
‖z‖1 + μ

2

∥∥z − (
K I − I

)∥∥2
2

)
(5)

where β and μ are the penalty parameters.
Equation 5 can be easily minimized by an iterative and

alternating approach due to the fact that with any two of the
three variables w, z and I fixed, the minimizer of Eq. 5 with
respect to the third one has a closed-form formula to com-
pute. Especially to obtain I , Yang et al. [25] reformulated this
equation with special block circulant structure which can be
obtained by a few two-dimensional discrete Fourier trans-
forms and arithmetic operations. This approach is numeri-
cally stable for large values of β and μ. It also converges
to a solution for any fixed β,μ > 0. Therefore, in our cur-
rent work, this alternating solution to the T V − L1 model is
adopted to obtain the TV-scale image.

Next, we will briefly introduce the MESC algorithm which
is based on the T V − L1 model and closely related to
TV-BMA.

3.3 The MESC algorithm

MESC approach [15] registers images through decomposing
an image into mutually exclusive scale components (MESC)
based on the T V − L1 model. A pattern in the original
image only appears in one of these components because
T V − L1 model can generate different patterns at differ-
ent scales as we discussed earlier. With those scale-exclusive
patterns, the alignment of the original image pair turns
into aligning corresponding layers independently and
choosing the optimal transformation of all corresponding
layers.

This algorithm works on three different scales to find the
optimal transformation: (1) the image contains the large scale
patterns obtained with a small λ1, Is1 ; (2) the image contains
the medium scale patterns obtained with a larger λ2, Is2 ; and
(3) the image contains the remaining small scale patterns
obtained by It − Is2 , Is3 , where It is the illumination-normal-
ized image generated by I

Is1
. Using the correlation ratio as

similarity metric, the algorithm iteratively works as follows:

1. Initialize the transformations of all corresponding scale
images to be Ts ;

2. Find the transformations T1, T2 and T3 in the three cor-
responding scale images Is1 , Is2 and Is3 , respectively, by
Powell’s local minimization method ;

3. Select the optimal transformation To among T1, T2, T3

and Ts using the correlation ratio as the similarity
metric [27];

4. Return to Step 1 and set Ts = To if the algorithm does
not converge.

The main problem of MESC is that only three scales are
used without considering the vast scale variations in the real
images. Therefore, we propose TV-BMA which adaptively
selects a suitable scale for each image. Before TV-BMA is
presented, the traditional illumination-BMA which is also the
building block of TV-BMA is reviewed briefly as follows.

3.4 The Illumination-BMA

The illumination-normalized BMA [14] first computes the
intensity differences between the observed region �o and
the overlapped matching region �m during sliding �m over
�o. Then it selects the displacement field associated with the
minimum among all intensity differences.

Let the corresponding pixel in �o and �m be po and pm ,
respectively, and the size of the overlapping area be W × H .
Then the intensity difference between �o and �m proposed
by Zhou [14] is

123

SIViP (2012) 6:647–667 651



eo,m =
∑
i, j

∑
k

∣∣(poi, j,k − pomean) − (qmi, j,k − qmmean)
∣∣

W ∗ H
(6)

where poi, j,k and qmi, j,k are the value of the kth color channel
for po and pm in the location (i, j), respectively. pomean and
qmmean are the average brightness of �o and �m , respectively,
which are used to normalize the illumination.

3.5 The TV-BMA

Built on T V − L1 model, MESC algorithm and
illumination-BMA, the TV-BMA works in the following
way. Illumination-BMA is applied first to the images in the
coarsest layer to compute an optimal displacement field. If
the intensity difference corresponding to the displacement
field is less than the predefined threshold, this displacement
field is used as the initial displacement field. Otherwise, there
may be relatively large roll or pitch, and then an iterative esti-
mation step is applied to find the optimal displacement field
with suitable TV-scale images. In this step, progressively
scale-decreased TV-scale images are fed into the illumina-
tion-BMA and the iteration process stops when an optimal
displacement field is found or the maximum number of itera-
tions has been reached. Denoting illum B M A(I1, I2)) as the
illumination-BMA algorithm for images I1 and I2, M as the
optimal displacement field obtained and ē as the intensity
difference corresponding to the optimal displacement field,
we can illustrate TV-BMA in Algorithm 1.

Algorithm 1 The TV-BMA algorithm
[M, ē] = illum B M A(I1, I2)
IF (ē < e1) THEN Output M
i = 1
REPEAT

I1 = T v(I1, λ)

I2 = T v(I2, λ)

[M, ē] = illum B M A(I1, I2)

λ = αλ

i = i + 1
UNTIL ((ē < e2) ‖ (i > t))
IF i ≥ t THEN Output error_message
ELSE Output M

In the above algorithm, e1 and e2 correspond to the error
thresholds of the illumination-BMA and TV-BMA, and t is
the max iteration times. In practice, e1 and e2 are set to be 0.1
and 0.2, respectively, and t is set to be 10. α is the parameter
to generate different TV-scale images and, in our experi-
ments, it is a constant and set to be 1.5. λ is initialized to be
1.5/ image scale, while image scale is defined as in [15].
T v(I, λ) is the function to obtain the TV-scale image by
Eq. 2.

In addition, for the illumination-BMA, in order to boost
the intensity difference between �o and �m to better distin-

guish different blocks than with Eq. 6, the intensity difference
eo,m is reformulated with squared differences as

eo,m =
∑
i, j

∑
k

((
poi, j,k − pomean

) − (
qmi, j,k − qmmean

)
W ∗ H ∗ C

)2

(7)

where C is the number of the color channels.

4 Motion refinement

After computing the displacement field from TV-BMA as the
initial motion of the coarsest layer, we perform an iterative
process for layer-by-layer-based camera calibration refine-
ment to stitch the source images. We introduce a motion
refinement process to refine the motion for the feature detec-
tion in the next layer and simultaneously remove outliers for
the subsequent camera calibration in the current layer.

4.1 The motion refinement and its embedded problem

Assume that the current layer is the cth layer. First, the fea-
tures in I c

i are detected by a corner detector. Then matching
features in I c

j are initialized by two different methods. If
current layer is the coarsest layer, i.e., c = 0, each matching
feature in I c

j is located by the initial displacement field calcu-
lated with TV-BMA. If the cth layer is not the coarsest layer,
i.e., c ≥ 0, the features in I c

j are located by the homography
matrix computed in the previous layer.

The matching process may work pixel by pixel to locate
each matching feature like in [14]. For each feature cor-
respondence, first a source 8 × 8 block is defined for the
feature in I c

i with this feature as the block center, then a tar-
get 16 × 16 block is defined for the matching feature in I c

j
with that feature as the target block center. By translating
the same sized block as the source block in the target block,
illumination-BMA refines the position of the matching fea-
ture in sub-pixel accuracy.

The above process has two problems. One is that it is
time-consuming since it checks every pixel in target block
to localize the refined position, and some pixels’ contrast is
too low to check at all. The other problem is that outliers
may exist because the inaccurate motion estimated from the
previous layer and the exposure difference can misguide the
pixel selection in the target block.

To tackle the first problem, a geometrical low contrast fil-
ter based on the corner response is applied to remove the
low contrast pixels. There is no need to check the low con-
trast pixels because they are flatly textured surface points
inside the target block. The removal of these unstable pixels
before block matching improves the speed as well as the accu-
racy. The other problem can be solved by RANSAC method
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which also obtains the correct projective motion for camera
calibration.

4.2 The low contrast filter

The low contrast filter is built on the edge response function
used in Harris corner filter. For each pixel p(x, y), its Hessian
matrix H is

H =
[

Dxx Dxy

Dxy Dyy

]

The corner pixel has two large eigenvalues. In practice,
we use the improved corner response function proposed by
Noble [28]

h = det(H)

tr(H)
= Dxx ∗ Dyy − D2

xy

Dxx + Dyy
(8)

where det(H) and tr(H) denote the determinant and trace of
H , respectively. Large h implies the pixel is likely to be a
corner, while low h indicates the pixel is of low contrast. By
setting the threshold of h, the low contrast pixels in the target
block will be excluded for block matching. In the Gaussian
pyramid, the contrasts of pixels in the coarse image are lower
than those in the fine image, so the threshold of h should be
adjusted accordingly. Empirically, the threshold is set to be
30

/
σ L−l for the lth layer in the L-layer Gaussian pyramid

used in the paper.

4.3 Outlier removal

There are likely outliers from the inaccurate motion or the
illumination difference after applying the low contrast filter.
We apply RANSAC to check the globally geometrical con-
sistency by computing an optimal projective homography as
well as removing outliers. In our method, RANSAC imple-
mentation of Kovesi [29] is applied, which is based on the
idea of Hartley and Zisserman [30]. In this implementation,
two robust methods are adopted to obtain the homography
as well as feature matches: (1) homography is computed by
SVD and (2) a symmetric distance metric is used to select
matches corresponding to a putative homography, where each
matching feature is transformed to its matched feature space
in distance computation.

After RANSAC, on one hand, the homography obtained is
used to detect the initial feature correspondences in the next
layer, which will be refined again by RANSAC to remove
outliers and improve homography repeatedly. On the other
hand, the focal length and the rotation matrix of each layer
can be robustly estimated based on the angle invariance of
feature vectors and the rotation invariance of feature matches,
respectively. In the following, the methods for focal length
and rotation matrix estimation are discussed.

5 Focal length estimation

We first explain the angle invariance of feature vectors, as
demonstrated in Fig. 3. For the clarity of description, the
camera coordinate is shown in Fig. 3a. According to this fig-
ure, the image coordinate of I is denoted as (O, X, Y ) and
the camera coordinate is denoted as (o, x, y) with the optical
axis passing through the image center. Assuming the focal
length is f , the pixel coordinates of 3D features A and B, A′
and B ′, are (xa, ya,− f ) and (xb, yb,− f ), respectively and
the angle between the feature vector

−→
oA and

−→
oB is θ . If A and

B are captured in several images, θ will remain the same as
shown in Fig. 3b. In this figure, A and B are imaged in I c

i and
I c

j as A1, B1, and A2 and B2, respectively. The focal lengths
for each image are fi and f j with Oi and O j being the image
centers. The coordinates of A1, B1, A2 and B2 can be writ-
ten as (xa1, ya1,− fi ), (xb1, yb1,− fi ), (xa2, ya2,− f j ) and

(xb2, yb2,− f j ). Denoting the vector angles between
−−→
oA1 and−→

oB1 as θA1 B1 , and between
−−→
oA2 and

−→
oB2 as θA2 B2 , we have

θA1 B1 = θA2 B2 (9)

Equation 9 formulates the angle invariance of feature
vectors. When there are N pairs of feature matches,(

N 2 − N
)/

2 of angle pairs satisfying Eq. 9 can be obtained.
Denoting θi,c,k and θ j,c,k as the kth vector angles in I c

i and
I c

j , respectively, we have

(
N 2−N

)/
2∑

k=0

θi,c,k =
(
N 2−N

)/
2∑

k=0

θ j,c,k (10)

Equation 10 can be solved by the weighted minimization
method proposed in [14] to accelerate the convergence. Set-
ting the weight wk to be the total length of the kth corre-
sponding feature vectors yields a minimization problem

e( fi , f j ) =
(
N 2−N

)/
2∑

k=0

wk
��θi,c,k − θ j,c,k

��
2 (11)

The focal lengths for two images can be set to be equal
if we use the associative property of matrix multiplication to
transfer Eq. 12 shown in Sect. 6 with the same unknown focal
length f . Therefore, fi and f j in Eq. 11 turn to be one focal
length f to be estimated: in the coarsest layer, i.e., c = 0, f
is estimated by golden section search with an initial search
range; in the non-coarsest layer, i.e., c > 0, f is estimated
by the simplex method with the initial value obtained from
the previous layer. In practice, the initial search range is set
to be [0, 100 ∗ max(image height, imagewidth)].
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(a)

(b)

Fig. 3 Principle of the focal length and rotation matrix estimation.
a Camera coordinate system. b The angle and rotation invariances
between an image pair

6 Rotation estimation

After the focal length is obtained, the rotation matrix can
be estimated by the rotation-invariant property of feature
matches. First we explain this invariance property with
Fig. 3b. If I c

i rotates with a 9-parameter R to be I c
j , for

matching features A1 and A2, the relationship between A1

and A2 is

⎡
⎣ xa1

ya1

− fi

⎤
⎦ = R

⎡
⎣ xa2

ya2

− f j

⎤
⎦ , R =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (12)

Equation 12 holds for B1 and B2 as well as other feature
matches. This property is called rotation invariance of fea-
ture matches.

Similar to the focal length estimation method, we have

∑
k∈Ni, j

pi,c,k =
∑

k∈Ni, j

Rp j,c,k (13)

where Ni, j is the total number of feature matches between
I c
i and I c

j and pi,c,k and p j,c,k are the positions of the kth
corresponding features.

The solution of the rotation matrix to Eq. 13 can also be
written as a least squares problem with all feature matches
considered as Eq. 11 for focal length estimation. But this
time, the weight used in Eq. 11 is omitted since it will add
to the sensitivity of the iterative solving process. Therefore,
the following error function is to be minimized to find the
rotation between I c

i and I c
j :

e(R) =
∑

k∈Ni, j

��norm(pi,c,k) − norm(Rp j,c,k)
��

2 (14)

Function norm(v) is used to normalize the vector v. Equa-
tion 14 is solved by the subspace trust region method [31,32],
which will be discussed in the following two sub-sections.

6.1 The subspace trust region method

The trust region method [31] is a class of optimization algo-
rithms that replaces directly minimizing f (x) with minimiz-
ing a simpler quadric function q(x). q(x) reasonably reflects
the behavior of f (x) in the neighborhood area �n around
the point x . This neighborhood area is called the trust region.
The quadric q(x) is defined by the first two terms of the Tay-
lor series and �n is usually spherical or ellipsoidal in shape.
Let s be the trial step over �n , this trust region subproblem
that obtains s = xk+1 − xk can be written as

min
s

{
1

2
sT Hks + gT

k s : ‖Qks‖2 ≤ �k

}
(15)

where gk is the gradient of f at the current point xk, Hk is
the Hessian matrix, Qk is a diagonal scaling matrix, and � is
a positive scalar. If f (xk + s) < f (xk), the next point xk+1

is updated to be xk + s; otherwise, it remains unchanged and
�n is shrunk for the next update.

Solving Eq. 15 in a reliable and efficient way is a
non-trivial task because it can easily converge to a local
minimum. One method is to replace the full dimension trust
region with a lower dimension subspace, whereby local min-
imum problem can be alleviated and computing complexity
is reduced.

In our experiments, we use the non-linear optimization
function provided in MATLAB as the implementation of the
subspace trust region method. It uses the two-dimensional
(2D) subspace approach [33] where the 2D subspace is deter-
mined with the aid of a preconditioned conjugate gradient
process, which forces global convergence via the steepest
descent direction or negative curvature direction and achieves
fast local convergence via the Newton step. The MAT-
LAB optimization function is based on the interior-reflective
Newton method described in [32]. The interior-reflective
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Newton method does not require the solution of a general
quadratic programming subproblem at each iteration and is
very robust with respect to its convergence.

6.2 The initialization of the subspace trust region method

To apply the subspace trust region method, a good initial
value of rotation is very important to ensure the convergence.
We adopt the singular value decomposition (SVD) approach
proposed by Umeyama [34]. This idea comes from the least-
square method, which will be discussed briefly in the follow-
ing. For more details, please refer to Umeyama [34].

According to Eq. 12,

pi,c,k − Rp j,c,k = 0 (16)

For all feature pairs, we can obtain the sum, e(x), of the
squared residuals

e(R) =
∑

k

(
pi,c,k − Rp j,c,k

)T (
pi,c,k − Rp j,c,k

)
(17)

The least-square method finds the minimum of e, min e(R).
According to Umeyama [34], Eq. 17 can be further writ-

ten as

e(R) =
∑

k

pT
i,c,k pi,c,k − 2pT

i,c,k Rp j,c,k + pT
j,c,k p j,c,k (18)

while

pT
i,c,k Rp j,c,k =

∑
k

tr
(

RT pi,c,k pT
j,c,k

)

= tr

(
RT

∑
k

p j,c,k pT
i,c,k

)
(19)

Denoting

M =
∑

k

p j,c,k pT
i,c,k (20)

as the correlation matrix, we can write the singular value
decomposition of matrix M as

M = uwvT (21)

where u and v are the orthogonal matrices and w is the diag-
onal matrix containing the singular values of M .

Umeyama [34] proves that the optimal rotation matrix
R which minimizes e(R) is uniquely determined when
rank(M) ≥ m − 1 (m denotes the number of row or col-
umn of the m × m square matrix R)

R = u

⎡
⎣ 1 0 0

0 1 0
0 0 det

(
uvT

)
⎤
⎦ vT (22)

Equation 22 shows the R is computed with the orthogonal
matrices from the SVD of M . In practice, rank(M) ≥ m−1,
therefore, Eq. 22 is used as the initial rotation matrix for the

subspace trust region method. This method of initialization
is more accurate and convenient than manually specifying an
initial value.

Given the subspace trust region method and its initializa-
tion, the method of rotation matrix estimation can be gener-
alized as follows. For the coarsest layer, i.e., c = 0, the initial
rotation can be obtained by Eq. 22. For the non-coarsest lay-
ers, i.e., c > 0, their rotation matrices are computed using
the initial value obtained from the previous layer.

After the rotation in the current layer is obtained, the iter-
ation of stitching refinement with images of next layer con-
tinues. When the computation of the rotation of the bottom
layer is finished, the source images can be finally registered.

7 Summary of the proposed method

After above discussions, we now summarize the proposed
image mosaic method for two images Ii and I j as follows.

Step 1 Decompose each image into an L−layer multi-
resolution pyramid with the coarsest layer as layer
0;

Step 2 Set current layer index c = 0;
Step 3 Obtain the initial motion M between I c

i and I c
j with

TV-BMA (Algorithm 1);
Step 4 Repeat the following steps until c > L − 1,

Step 4.1 Find the features in I c
i and calculate the cor-

responding features in I c
j under M with the

low contrast filter;
Step 4.2 Remove the outliers and calculate the new

motion M by RANSAC;
Step 4.3 If c = 0, calculate the focal length accord-

ing to Eq. 11 with the golden section search
method and then go to Step 4.5; otherwise go
to Step 4.4;

Step 4.4 Calculate the focal length according to
Eq. 11 with the simplex method;

Step 4.5 If c = 0, initialize the rotation R with SVD
decomposition according to Eq. 22 and then
go to Step 4.7; otherwise go to Step 4.6;

Step 4.6 Refine R according to Eq. 14 with the sub-
space trust region method;

Step 4.7 c = c + 1.

8 Experimental results

We now present our experimental results. Our approach is
implemented in MATLAB. In all experiments, the Gaussian
pyramid is created to represent the multi-resolution images.
The pyramid creation process stops when the width or the
height of a layer is less than 50 pixels, which will be the top
layer.
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Harris corner detector [29] is used to detect corners as
features for each layer. The parameters of the detector are
set as follows: the standard deviation of smoothing Gaussian
starts as 1 in the coarsest layer and increases by a factor of
1.5 for each subsequent layer; the region radius for the non-
maximal suppression is set to be 1 in the coarsest layer and
increments by 1 for each subsequent layer; the threshold for
the non-maximal suppression is set to be 5 in the coarsest
layer and 300 for all other layers. The design goal of the set-
tings is twofolded:: (1) It can obtain large number of features
in the coarsest layer to compute a robust initial motion; (2) it
also helps to remove unstable and low contrast pixels accord-
ing to the increasing resolution of each layer. Moreover, if
either matching feature is within 3 pixels of image border,
the feature correspondence pair will be excluded from further
motion refinement, in order to ensure sufficient neighboring
area for comparing the similarity of a feature pair.

Two types of experiments are performed with all source
images warped to the cylindrical surface to show the stitching
result. Type 1 shows the process of mosaicking two neigh-
boring images; type 2 shows the stitching of multiple images.
While the first type is to show the basic idea presented in this
paper, the second type shows the extension of our method to
wide-angle mosaic of an image sequence. In our experiments,
blending after the registration is not discussed because our
main focus in this paper is to improve the registration accu-
racy, especially when the source images have relaxed motion.
Therefore, in the stitched image, we sum the overlapping
areas from warped source images directly with equal weights
to demonstrate the registration performance. We believe with
accurate registration, fine blending can be achieved by exist-
ing blending methods, such as those discussed in [1].

8.1 Two images

We first demonstrate our method with the image pair in
Fig. 2a. Figure 4a and b are the 5th 40 × 30 layers of the
Gaussian pyramids, respectively. The intensity differences of
illumination-BMA according to different displacement fields
are visualized as a mesh in Fig. 4c. As labeled minimum in
the figure, the final output displacement is (36, 23). But this
value is incorrect because there are many other similar local
minimums. As Fig. 4a and b show, Gaussian scale image con-
tains different scale objects mixed together and thus those two
images cannot initialize a correct displacement field with the
illumination-BMA.

But, according to TV-BMA, if we remove the textures
inside the objects, such as the bell tower, the walls and the
windows, through the TV-scale image, the general structure is
much clearer and the illumination-BMA can be applied suc-
cessfully. In the TV-BMA, the optimal displacement field is
computed with only one iteration where λ is set to be 0.1750.
The TV-scale images of Fig. 4a and b are shown in Fig. 5a

and b, respectively. Clearly we can see large flattened pat-
terns shown in Fig. 5a and b are similar in texture and shape.
As Figs. 4c, 5c shows the mesh view of the intensity dif-
ference according to different displacement fields for these
two TV-scale images. We can see the intensity difference of
TV-BMA is very smooth with few noisy local optima. There-
fore, the global minimal position (17,−6) is easier to obtain
than with the illumination-BMA.

Table 1 shows the proportion of the low contrast pix-
els removed in each layer. layer means the pyramid layer.
pixels compared means the average number of pixels com-
pared inside the target block of the right image for one feature
detected in the left image. pixels removed means the aver-
age number of pixels removed in the target block because of
low contrast. ratio shows the ratio of pixels removed to
pixels compared in percentage. Feature correspondences
less than 2 pixels away from the border are removed from
further low contrast filtering because those features do not
have adequate overlapping areas to check their similarity
and thus are unstable to be putative matches. Therefore,
pixels compared is always less than 256 because there are
less than 256 candidate positions in average during the refine-
ment process. When the resolution is low, such as layer 0
and 1, few features are detected and those near-border fea-
tures will have a large ratio in the total number of pixels
to compare. In this case, we have a relatively small number
of pixels compared, e.g., in layer 0, only 204.5 pixels are
compared in average for one feature. However, as the reso-
lution goes higher, such as layer 3 and 4, the proportion of
feature correspondences along the border to all feature cor-
respondences decreases. Then a higher pixel compared is
obtained, e.g., almost 256 pixels compared (253.6727) for
layer 4. As we can see, in each layer, about 25% of pixels
are removed from block matching and thus the low contrast
filter greatly improves the feature matching speed.

Table 2 shows the RANSAC rectification result in each
layer. putative matches is the number of feature matches
after the low contrast filter. outliers is the number of outliers
detected by RANSAC. ratio shows the ratio of outliers to
putative matches in percentage. From this table, we can see
that the proportion of outliers is reduced as the layer index
goes up since the motion parameters have been gradually
improved by the low contrast filter and RANSAC. Figure 6
shows the 108 feature matches (inliers) obtained finally in
the bottom layer (source images).

Focal lengths estimated and updated in each layer are
shown in Table 3. The final stitching result obtained is shown
in Fig. 7a with the green frame showing the overlapping
area. Simply generated by averaging pixel values from both
images, the overlapping area has no ghosting, which demon-
strates the effectiveness of our method.

Finally, we derive the roll, pitch and yaw, respectively,
from the recovered rotation matrix: −3.9739◦,−6.1362◦
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Fig. 4 The illumination-BMA
approach for images in Fig. 2a.
a The coarsest layer in the
pyramid of the left image. b The
coarsest layer in the pyramid of
the right image. c The mesh
view of the intensity difference
of the overlapping area between
Fig.4a and b under different
displacement fields. The x and y
axes represent the displacements
of Fig. 4a and b in horizontal
and vertical directions,
respectively. Minimum
corresponds to the optimal
displacement field obtained
finally

(a) (b)

−30 −20 −10 0 10 20 30−20
020

0

1

2

3

4

5

6

7

8

9

  minimum

xy

ab
so

lu
te

 d
if

fe
re

n
ce

0

2

4

6

8

10

12

14

16

(c)

and 22.0206◦. It is difficult for traditional BMA such as
illumination-BMA to find the displacement field with such a
large roll and pitch.

We also apply our method to images in Figs. 2b, and
7b shows the stitching result. In Fig. 7b, there is also
no ghosting in the overlapping area. The roll, pitch and
yaw rotation angles are 19.4849◦,−3.8155◦ and 10.0586◦,
respectively.

8.1.1 Comparison with existing techniques

We compare our method to off-the-shelf techniques for the
images shown in Figs. 2a and b. The Panorama Factory
[35] is selected among many commercial products because
it is highly rated and has an easy-to-use trial version. The
latest trial version 5.3 is used for comparison. The pop-
ular open-source software Hugin [36] is also used as the
state-of-the-art research for performance comparison. Devel-

oped through world-wide collaboration, Hugin incorporates
a number of robust algorithms for image registration and
panorama creation. The latest version 0.7.0 is used in our
experiments.

The overlapping area in the final stitched image is used for
comparison between The Panorama Factory, Hugin and ours.
As described before, the overlapping area is obtained with
equal weights from both warped source images so that the
ghostings coming from inaccurate registration can be clearly
seen. This method works fine for Hugin and our method since
the warped source images of these two techniques are avail-
able. However, The Panorama Factory trial version does not
proVIDE the warped source images, while the stitched result
is already blended. Therefore, we have to make a detour to
manually clip the overlapping area from the blended mosaic.
Fortunately, as our experimental result shown below, it does
not affect the visual judgment of the stitching quality because
The Panorama Factory has the worst performance among
them and its artifacts can be easily seen.
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Fig. 5 The TV-BMA approach
for images in Fig. 2a. a The
TV-scale image of Fig. 4a with
λ = 0.1750. b The TV-scale
image of Fig. 4b with
λ = 0.1750. c The mesh view of
the intensity difference of the
overlapping area between
Fig. 5a and b under different
displacement fields. The x and y
axes represent the displacements
of Fig. 5a and b in horizontal
and vertical directions,
respectively. Minimum
corresponds to the optimal
displacement field obtained
finally
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Table 1 The average pixels
removed by the low contrast
filter

Layer 0 1 2 3 4

Pixels compared 204.5000 227.6667 245.8667 247.6522 253.6727

Pixels removed 42.6250 81.1111 70.9000 73.6522 66.8727

Ratio 20.8435 35.6371 28.8368 29.7402 26.3618

Table 2 The outliers removed
with RANSAC Layer 0 1 2 3 4

Putative matches 8 18 30 69 110

Outliers 3 11 2 3 2

Ratio 37.5000 61.1111 6.6667 4.3478 1.8182

Figure 8 shows the overlapping area obtained for images
in Fig. 2a and b after they are registered. Comparing these
two figures, we can find that The Panorama Factory exhibits
significant ghostings. Hugin generates slight ghostings at the
top of the wall for Fig. 2a and serious ghostings for Fig. 2b,

while there is no ghosting with our method for both figures.
Therefore, our method achieves better performance than The
Panorama Factory and Hugin.

Besides these two exemplar comparisons, more experi-
ments with two images were made to test the performance of
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Fig. 6 The 108 feature matches obtained in the bottom layer for images of Fig. 2a

Table 3 The focal length estimated

Layer 0 1 2 3 4

Focal length 48.4642 84.9531 176.6588 350.3276 694.4687

our method and some of those examples will be discussed in
the next sub-section to prove the advantages of our method.

8.1.2 Additional examples

Figure 9 gives five additional image pairs which are com-
pared in the same way as in Fig. 8. Indexed from 0 to 9 for
source images in Fig. 9a, the overlapping area of the stitch-
ing result from The Panorama Factory, Hugin and our method
are shown, respectively, in Fig. 9b–d. Their relative rotations
finally obtained from TV-BMA and λ used in TV-BMA are
listed in Table 4.

Like the comparison presented in Fig. 8, we can find in
Fig. 9 that the worst performance is again from The Pano-
rama Factory where no image pair can be smoothly stitched.
All the motions computed from this tool are less accurate
than from other two methods, indicating that The Panorama
Factory is not able to handle relaxed motion well.

We can also see that our method achieves better perfor-
mance than Hugin for relaxed motion when pitch and roll are
large, but not too large, as in image pairs (0, 1) and (2, 3).
In the stitching results of these two image pairs, there is
no ghosting with our method but there are still consider-
able ghostings with Hugin. The satisfactory result is attrib-
uted to our multi-resolution stitching pipeline, especially
TV-BMA in one iteration (see λ shown in Table 4) which
obtains an accurate initial motion for later multi-resolution
stitching.

Fig. 7 The stitching result of Fig. 2a and b. a The stitching result of
Fig. 2a. b The stitching result of Fig. 2b

When the roll angle or pitch angle become even larger,
both Hugin and our method do not register images very well.
Yet as image pair (4, 5) and (6, 7) shown in Fig. 9c and d,
TV-BMA in one iteration (see λ shown in Table 4) can still
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Fig. 8 Performance
comparison between The
Panorama Factory, Hugin and
our method. The overlapping
areas of stitched images from
Fig. 2a and b are compared. The
overlapping area from The
Panorama Factory is cut from
the blended mosaic while the
overlapping area from Hugin
and ours is an average of the
source images. a The
overlapping areas for images in
Fig. 2a with The Panorama
Factory, Hugin and our method,
from left to right. b The
overlapping areas for images in
Fig. 2b with The Panorama
Factory, Hugin and our method,
from left to right

obtain a more robust initial displacement field and lead to
more accurate registration than Hugin. There are fewer ghos-
tings by our method than by Hugin, especially for image pair
(6, 7).

While above comparison examples show the robustness
of our method, we further show an additional example to
demonstrate the advantages of our multi-resolution pipeline:
it may achieve more robust stitching result than other two
methods. Image pair (8, 9) is an example of the images impos-
sible to stitch if the camera rotation leads to visible occlusion
changes. Looking at the tallest tree in the image pair (8, 9),
one can see significant occlusion changes, due to large cam-
era motion. Normally it is difficult to compute a globally
consistent motion between pixels in such type of overlapping
area for image stitching. Our method stitches image pair (8, 9)
under a roughly initialized displacement field although it
does not completely avoid ghostings. However, there are
still fewer ghostings for the trees with our method than
with Hugin as shown in Fig. 9c and d. This demonstrates
that our method obtains a high stitching quality even when
there are occlusion changes, thanks to our multi-resolution
strategy.

8.2 Multiple images

Our method also applies to stitching a sequence of images
captured with relaxed motion. In this case, the registration
method is applied to each neighboring image pair. First, all
images are decomposed into pyramids and the motion of
all top layers are initialized with TV-BMA. Then layer by
layer refinement process begins. In each layer, the refinement
process computes the motions and camera parameters of
all images of this layer and then propagates the results to
next layer. For the first image pair, i.e., first two images, the
estimation method is the same as proposed in Sect. 7. For
the remaining image pairs, while their motion and rotation
refinement processes are the same as introduced in Sects. 4
and 6, their focal lengths are estimated in a slightly dif-
ferent way. Each image will estimate its own focal length
with Eq. 11. This time fi is set to be the focal lengths
of the previous image and f j is set to be the focal length
of current image whose initial value is the same as its
previous image in the same layer (when c = 0) or the
double value of its previous layer in the same pyramid (when
c > 0).
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Fig. 9 More performance
comparison between The
Panorama Factory, Hugin and
ours. The overlapping areas
shown in this Figure are
generated in the same way as in
Fig. 8. a Five image pairs used
in the performance comparison.
These images are indexed as
0–9 from the left to the right. b
The overlapping areas obtained
by The Panorama Factory
corresponding to the five image
pairs shown in Fig. 9a. c The
overlapping areas obtained by
Hugin corresponding to the five
image pairs shown in Fig. 9a. d
The overlapping areas obtained
by our method corresponding to
the five image pairs shown in
Fig. 9a

Table 4 The recovered angles and the λ computed with our method for
the image pairs shown in Fig. 9. For the coarsest layer for image pair
(2, 3), it is sized 47 × 36 and thus its start λ is 0.1472. For the left pairs,
each has a coarsest 30×40 layer and thus its start λ is 0.1750. Only one

iteration is needed for all pairs except the last one which cannot be reg-
istered correctly with TV-BMA, in which case, the initial displacement
field is set manually (manual)

Image pair (0, 1) (2, 3) (4, 5) (6, 7) (8, 9)

Roll 11.0646 10.2635 −18.1565 −13.5921 9.9290

Pitch −2.9429 −1.4773 −2.9787 12.2426 5.9771

Yaw 13.0881 18.0531 23.2635 17.6844 25.7783

λ 0.1750 0.1472 0.1750 0.1750 manual
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Fig. 10 A 5-image sequence of tall and long buildings. These images are indexed as 0–4 from left to right and the images marked by red rectangle
have relaxed motions w.r.t their predecessors

Table 5 The finally detected
feature matches in the bottom
layer, recovered angles and λ

adaptively selected in TV-BMA
for neighboring image pairs in
Fig. 10 by our method

Image pair (0, 1) (1, 2) (2, 3) (3, 4)

Feature matches 387 516 364 407

Roll −6.7568 −4.7317 17.5688 −4.2039

Pitch −0.5636 −0.6733 −0.1411 1.1539

Yaw 11.0102 8.6162 10.3370 5.9745

λ 0.1472 0 0.2207 0

Table 6 The final focal length
estimates of images in Fig. 10

Image index 0 1 2 3 4

Focal length 1971.2340 1973.3381 1968.1410 1972.5369 1980.1795

First we show a 750 × 562 image sequence of tall and
long buildings (Fig. 10). The images are indexed 0 through
4 from left to right for the convenience of discussion.

Table 5 gives the λ, which is adaptively selected for creat-
ing the TV-scale image in TV-BMA for the motion initializa-
tion, the final feature matches and rotation angles obtained.
In this table, f eature matches represents the final number
of feature matches obtained for bottom layer image pairs.
Since the coarsest layer is of size 47 × 36 and thus the
starting λ in the iteration step of TV-BMA is 0.1472. A
zero λ means the displacement field is recovered without
the iterative estimation in TV-BMA. For the two marked
with red rectangles of Fig. 10, they have large relative roll
(−6.7568◦ and 17.5688◦) than others. Therefore, as shown
in Table 5, there are additional iteration steps used in TV-
BMA when registering them to their respective previous
images.

Table 6 shows the final focal lengths obtained. Figure 11a
shows the final stitching result. The mask image in Fig. 11b
shows the corresponding placement of source images. Since
the focal lengths and rotation matrices are accurately recov-
ered, these images can be finely stitched.

Figure 12 gives another example sequence where all five
1, 024 × 768 images are captured with deliberate relaxed
motions. Again, images are indexed 0 through 4 from left to
right. The two images in the red rectangle need more itera-
tions in TV-BMA, which will be discussed next.

Table 7 is obtained for this sequence like Table 5. The
size of the top layer is 64 × 48 and the initial λ is 0.1094. All
image pairs have to be estimated through the iteration step in

TV-BMA since there are about 20 degree roll for all image
pairs.

We find that only pair (2, 3) (images in red rectangle
in Fig. 12) requires five additional iterations in TV-BMA.
This is because large scale patterns have quite different illu-
mination and orientations and thus only additional smaller
scale patterns can help find the best displacement field, as
explained in Fig. 13. As the green rectangles demonstrate,
small λ tends to smear out patterns and textures for compari-
son (Fig. 13a) and thus it is difficult to find the displacement
field between the two images. But when the λ becomes large
enough (Fig. 13b), sufficient number of patterns are avail-
able to align the images and to obtain the initial displacement
field.

The final computed focal length for each source image
is shown in Table 8. The final stitching result is shown in
Fig. 14a which has only one apparent ghosting road light.
Considering the error accumulation through multiple images,
the distortions in the camera lens as well as the occlusion
changes because of large roll between image 3 and 4 (recall
the image pair (8, 9) of Fig. 9), such ghosting is acceptable.
The mask image shown in Fig. 14b displays the position and
shape of each warped image.

8.2.1 Additional examples

We also show two long sequences with relaxed motion
between neighboring images. The stitching cannot be done
by simply applying our local registration method discussed
so far because of the significant error accumulation among
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Fig. 11 The stitching result of images in Fig. 10. a The stitching result. b The mask image showing the position and shape of each stitched image
in Fig. 11a

Fig. 12 A 5-image sequence captured with deliberately relaxed motions. These images are indexed as 0–4 from left to right. The images inside
the red rectangle need more iterations than others because of different illumination and orientations in the patterns of their overlapping area

image pairs for a long sequence. As such, our proposed
method is first taken to be the local registration method
and applied in the same way as stitching the two 5-image
sequences discussed before. Then our recently proposed new
bundle adjustment method [37] is applied as the global reg-
istration method to stitch these images. The bundle adjust-
ment method is used to remove the error accumulation of the
motion between neighboring images through adjusting
the parameters of all images together. For more details on
the bundle adjustment method, please refer to [37].

Figure 15 shows the nine images registered together. There
are significant pitch or roll motion between neighboring
images as Fig. 15a shows, yet they are successfully stitched
by our method (Fig. 15b).

Figure 16 gives another sequence of 10 noisy images. Our
proposed local and global alignment method can still suc-
cessfully stitch them without any ghosting. In this case, we
simply omit the low contrast filter for obtaining more fea-
tures. Figure 16b shows the final stitching result. This result
is also difficult to obtain without the proposed registration
method in this paper.

9 Discussion

In this section, we discuss how much roll and pitch are sup-
ported by previous methods and our algorithm, respectively.
It is difficult to quantify the supported roll and pitch angles
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Table 7 The finally detected
feature matches in the top layer,
recovered rotation angles and
adaptively selected λ with
TV-BMA for images in Fig. 12

Image pair (0, 1) (1, 2) (2, 3) (3, 4)

Feature matches 575 342 224 439

Roll 19.3783 −15.6459 19.6835 −21.0502

Pitch 0.2425 2.7956 −1.4949 −0.2480

Yaw 6.7424 9.6152 9.0181 10.2574

λ 0.1094 0.1094 0.8306 0.1094

Fig. 13 The comparisons of image pair (2, 3) in Fig. 12. When λ is
small (0.1094), the TV-scale images are too small for the illumination-
BMA. Therefore, TV-BMA adaptively selects λ = 0.8306 to generate
the TV-scale image with enough details to obtain a global optimum. a
The TV-scale images when λ = 0.1094. b The TV-scale images when
λ = 0.8306

in former research since there is no such reports to our best
knowledge. However, we argue that: existing work cannot
robustly cope with an image pair having relatively large roll
and pitch, especially when the absolute roll and pitch is about
20◦ and 6◦, respectively. Our proposed method specially tar-
gets large motions as this with TV-BMA.

However, there are at least two questions left to answer:
(1) Can we handle even larger roll or pitch? and (2) can we
have large roll, pitch and even raw simultaneously? For the
first question, we find it is rather difficult for our method to
deal with roll and pitch larger than 20◦ and 6◦, respectively.
The main reason is that there will be significant occlusion
changes for the image pair with disappearance of existing
surfaces and newly appearing surfaces on the right image,

and thus the two images are unlikely to be stitched well. This
is also the reason that the lamp in Fig. 14a has ghostings,
note that the absolute roll angle between the last image pair
is more than 20◦ (−21.0502◦). The effect of pitch and roll
on occlusion changes also relates to the focal length. This is
due to the fact that the object appears large when the focal
length turns small. Therefore, a minor occlusion change in
the image with a large focal length can appear to be a large
occlusion change in the image with a small focal length. For
the second question, we can also conclude that it is difficult to
have roll, pitch and yaw to be around 20◦, 6◦ and 20◦ simul-
taneously because it will also have drastic occlusion changes
with considerable existing surfaces disappearing and new
surfaces appearing. This is one of the reasons why there is
no finely stitched image pair having relatively large roll, pitch
and yaw at the same time in all experiments discussed in this
paper.

10 Conclusions

This paper presents a new multi-resolution method for mosa-
icking images captured with relatively large roll or pitch
movement called relaxed motion. It integrates direct method
to find the initial motion and feature-based method to cali-
brate the camera layer by layer. The main contribution lies
in our motion estimation method. First, an adaptive BMA
called TV-BMA is proposed whereby T V − L1 model is
applied to generate TV-scale images of the coarsest layer
with appropriate details for illumination-BMA. TV-BMA
greatly improves the accuracy of motion estimation of images
with a relatively large roll or pitch. Second, the low contrast
filter and RANSAC remove noisy low contrast pixels and
ensure global geometrical consistency. Our results show we
can obtain a much stable projective homography for feature
detection and reliable inliers for camera calibration. On the
basis of the angle-invariant property of feature vectors and the
rotation variance property of feature matches, we also pro-

Table 8 The focal lengths
estimated finally for images in
Fig. 12

Image index 0 1 2 3 4

Focal length 2996.7052 2996.7054 2993.4695 2998.9570 2997.8543
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Fig. 14 The stitching result of images in Fig. 12. a The stitching result. b The mask image showing the position and shape of each stitched image
in Fig. 14a

Fig. 15 A clear nine-image sequence registered by our method and bundle adjustment. a The source images. b The registered result

pose a combination of non-linear optimization methods to
improve the estimation accuracy of focal length and rotation
matrix, which are critical to final stitching. These methods
include golden section search, simplex method and subspace
trust region method. Extensive experiments demonstrate the

efficiency of our method in mosaicking images with relaxed
motion.

However, there are also some problems with the pro-
posed method. One problem is that the illumination normal-
ization method in the illumination-BMA cannot cope with
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Fig. 16 A noisy ten-image sequence registered by our method and bundle adjustment. a The source images. b The registration result

large illumination variation between neighboring images. We
tried gamma correction to work around the difficulty but
it does not help much. Some images cannot be automati-
cally stitched when this illumination normalization problem
appears because TV-BMA does not converge. The pair (8, 9)
shown in Fig. 9 is an example of this problem, where we
manually set the displacement field for comparing the per-
formance. Another problem is how to handle images with few
detected features. Currently, we simply lower the threshold
and the region radius of Harris corner detector to increase
the number of features or skip the low contrast filter when
there is very few features (Fig. 16 is such an example.). Jin
[21] proposes a minimum solution for aligning two images
where only three feature matches are required. It is a possible
solution we will study it in the future.

In the future, we will also study image mosaicking of
other types of hard-to-stitch images, such as images with
very small overlap, large exposure difference and apparent
lens distortions. We envision a more flexible mosaic system
if these goals are reached.
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